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1. Executive Summary

The DIVA (Data IntensiVe Architecture) Project has developed a prototype workstation class
system using VLSI PIM (Processor-In-Memory) chips as smart-memory coprocessors to a
conventional microprocessor. These chips represent the first smart memory devices to support
virtual addressing and be capable of executing multiple threads of control. The DIVA PIM VLSI
is fabricated in TSMC 0.18-micron technology. The chip measures 9.8 mm on a side and
contains 55 million transistors.

The successful demonstration of the DIVA prototype system incorporating this chip involved
research in several areas including: System Architecture, Software System Architecture, PIM
Architecture, VLSI Architecture/Implementation, Emulator Architecture/Design and the actual
development of the prototype system hardware and software. These areas involved teams made
up of staff from USC/Information Sciences Institute, the University of Notre Dame, Caltech, the
University of Delaware and AlphaTech, Inc.

The goals of the DIVA Project were to demonstrate the capabilities of PIM technology as smart
memory in a system:
e Exploit the inherent memory bandwidth
0 embedded DRAM technology
e Cover a broad range of applications:
o irregular memory accesses (sparse-matrices & pointers)
0 image processing and multimedia (streaming computations)
e Evolutionary application migration path
0 PIMs also support standard memory accesses
o familiar parallel programming paradigm
e Prototype a workstation-class system
0 VLSI PIM chips in standard memory modules

All these goals were met. The projected peak performance on a DIVA system with 32 PIMs is 40
GOPS, with an aggregate memory bandwidth of 160 Gbytes/second. This is more than two
orders of magnitude bandwidth increase over conventional systems meeting the DIS (Data
Intensive Systems) goal. A 35-x speedup on the “cornerturn” benchmark, a matrix transpose
kernel function found in many data intensive DoD applications, was also demonstrated.

The DIVA VLSI PIM developed under the DARPA Data Intensive Systems (DIS) Program is
proving to be effective in ameliorating the processor-memory bottleneck present in most of
today's computing systems. In addition, DIVA PIM technology has been incorporated into the
MONARCH (MOrphable Networked ARCHitecture) Project under the DARPA PCA
(Polymorphous Computer Architecture) Program and Godiva in partnership with Hewlett
Packard on the HPCS (High Productivity Computing System) Program.

2. Introduction

The increasing gap between processor and memory speeds is a well-known problem in computer
architecture, with peak processor performance increasing at a rate of 50-60% per year while
memory access times improve at merely 5-7%. Further, techniques designed to hide memory
latency, such as multithreading and prefetching, actually increase the memory bandwidth



requirements [Burger96]. Recent VVLSI technology trends offer a promising solution to bridging
the processor-memory gap: embedded-DRAM technology integrates logic with high-density
memory in a processing-in-memory (PIM) chip. Because PIM internal processors can be directly
connected to the memory banks, the memory bandwidth is dramatically increased (with hundreds
of gigabit/second aggregate bandwidth available on a chip --- up to 2 orders of magnitude over
conventional DRAM). Latency to on-chip logic is also reduced, down to as little as one half that
of a conventional memory system, because internal memory accesses avoid the delays associated
with communicating off chip.

The system described in this report, DIVA (Data IntensiVe Architecture), leverages embedded-
DRAM technology to replace or augment the memory system of a conventional workstation with
“smart memories” capable of very large amounts of processing. System bandwidth limitations
are thus overcome in three ways: (1) tight coupling of a single PIM processor with an on-chip
memory bank; (2) distributing multiple processor memory “nodes” per PIM chip; and, (3)
utilizing a separate chip-to-chip interconnect, for direct communication between nodes on
different chips that bypasses the host system bus. The DIVA system architecture is focused on
achieving the following four goals: (1) developing PIMs that can serve as the only memory in the
system, assuming the dual roles of “smart memories” and conventional memory; (2) supporting a
wide range of familiar programming paradigms, closely related to parallel computing; (3)
targeting applications that are severely impacted by the processor-memory bottlenecks in
conventional systems: sparse-matrix and pointer-based applications with irregular memory
access patterns, and image and video applications with large working sets; and, (4) developing a
VLSI device to exploit memory and communications bandwidth in PIM-based systems while
making efficient use of on-chip resources for target applications. These four goals distinguish
DIVA from other PIM-based architectures.

The integration into a conventional system affords the simultaneous benefits of PIM technology
and a high-performance microprocessor host, yielding high performance for mixed workloads.
Since PIM processors are usually not as sophisticated as state-of-the-art microprocessors due to
on-chip space constraints, systems using PIMs alone in a multiprocessor may sacrifice
performance on uniprocessor computations [Saulsbury96][Kogge94], while SoC (System-on-a-
Chip) solutions (e.g., the IRAM [Patterson97] and the Mitsubishi M32R/D [Mitsubishi99]) limit
the application domain. DIVA’s support for a broad range of familiar parallel programming
paradigms, including task parallelism for irregular computations, distinguishes it from systems
with restricted applicability (such as to SIMD parallelism [Elliot99][Gokhale95][Patterson97]),
as well as systems requiring a novel programming methodology or compiler technology to
configure logic [Babb99], or to manage a complex memory, computation and communication
hierarchy [Kang99]. DIVA’s PIM-to-PIM interconnect improves upon approaches that serialize
communication through the host, which decreases bandwidth by introducing added traffic on the
processor memory bus [Oskin98][Gokhale95].

A major challenge in meeting the above four goals is the integrated system design, which
implements the system architecture and spans the applications, systems software, host-to-
memory interface, memory-to-memory interconnect, PIM software and embedded DRAM VLSI
devices.



The remainder of this report is organized as follows. The next section summarizes the DIVA
system architecture, to set the context for the PIM microarchitecture and other sections that
follow. Section 4 describes the VLSI architecture and implementation in detail. Section 5
presents the compiler optimization, implementation and performance results. Section 6 describes
the DIVA system simulator that supported the applications and architectural development
throughout the DIVA Project. Section 7 sets out the details of how the DIS benchmarks and
stressmarks as well as other application code were used with the simulator to evaluate DIVA’s
performance. Section 8 summarizes our approach to an FPGA (Field Programmable Gate Array)
based emulator and the lessons that we learned in this endeavor. Section 9 presents the system
integration that was required to produce a successful system prototype demonstration at DARPA
Tech 2002. In the remaining sections, we summarize our results, technology transfer,
publications and conclusions.

3. System Architecture

A driving principle of the DIVA system architecture is to efficiently utilize PIM technology in a
way that requires only “evolutionary” software support. This principle demands an approach that
enables integration of PIM features into conventional systems as seamlessly as possible.
Therefore, DIVA chips will be packaged as conventional memory modules. Inserted onto a
conventional microprocessor motherboard, the memory on the DIVA chips is accessed by the
host microprocessor as if it were conventional memory.

In Figure 1, we show a small set of PIMs connected to a single external host processor through a
host-memory interface. The PIM chips communicate through separate PIM-to-PIM channels.
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Figure 1. DIVA system architecture

This separate memory-to-memory interconnect enables communication between memories
without involving the host processor.

Spawning computation, gathering results, synchronizing activity, or simply accessing non-local
data is accomplished via parcels. A parcel is closely related to an active message as it is a
relatively lightweight communication mechanism containing a reference to a function to be
invoked when the parcel is received [vonEicken92]. Parcels are distinguished from active
messages in that the destination of a parcel is an object in memory, not a specific processor.

Parcels are transmitted through a separate PIM-to-PIM interconnect to enable communication
without interfering with host-memory traffic. This interconnect must be amenable to the dense
packing requirement of memory devices and allow the addition or removal of devices from the
system. For system sizes of the scale expected for DIVA (on the order of 32 PIM chips), this



combination of requirements favors a one dimensional network [Kang00]. Future generations of
DIVA-like systems that contain large numbers of PIM chips will require a more complex
interconnection network and are the topic of future research.

Parcels, application code, and data contain virtual addresses. To translate these addresses without
the overhead of maintaining conventional page tables at each node, we classify DIVA memory
according to usage [Hall99]: (1) global memory visible to the host and PIM nodes; (2) dumb
memory allocated as conventional pages in a host application's virtual space and untouched by
PIM node processing; and, (3) local memory used exclusively by PIM node routines. To
condense translation information, rather than page tables, we use segments, each of which is
defined by segment registers which are used by the node address translation unit as discussed
below.

The primary functions of the node address translation unit are to translate virtual addresses to
physical addresses for those accesses, which are locally resident, and to provide access
protection. The types of accesses generated by a DIVA PIM processor that require translation
include instruction fetches and data accesses to memory or memory-mapped devices such as
parcel buffers, generated by load or store instructions.

Given the simplicity of the address translation scheme, very little hardware support is needed to
effect efficient translation. A segment base address register and limit register is needed for each
of the eight local segments. Also, one virtual base, limit, and physical base register are needed
for each resident global segment. The initial DIVA architecture provides four sets of global
segment registers, although alternative architectures could provide more. The address translation
unit contains no direct support for home node translation, although the preferred system
programming is such that the global segments resident on a node form the portion of global
memory for which that node is the home node. If this is not the case, address faults invoke
system software, which performs the home node translation.

In addition to local segments, a node maintains translation information for its portion of global
memory. Remote addresses are translated via the concept of a home node, which is guaranteed to
have the translation [Saulsbury95]. Thus, each node's portion of global memory includes objects
for which it is the home node. The major advantages of this approach are that translation may be
accomplished rapidly, and translation information on each PIM scales well.

Memory management functionality is distributed among the host's standard operating system,
augmented with support for PIMs, and run-time kernels on each PIM processor. Unlike standard
multiprocessor systems, the host, which has a system-level view, remains a central figure in
system-level scheduling, disk 1/O operations, and memory management. The PIM run-time
kernel must collaborate with the host on system-level operations, such as loading PIM programs
and data, memory management of PIM-visible segments, and PIM context switches between
different user programs. The challenge in this collaboration is that there are really two views of
memory that must be maintained. For dumb pages and for disk 1/O of PIM-visible segments, the
host sees memory as standard 4Kbyte pages; the PIM run-time kernel instead views PIM-visible
memory as variable-sized segments [Hall00].



4. VLSI Architecture and Implementation

The goal of the VLSI development on the DIVA project was to produce a prototype chip that
demonstrated the enormous bandwidth available between memory blocks and processing
subcomponents on a processing-in-memory (PIM) device. As the following sections discuss, the
DIVA project was very successful with its VLSI demonstrations and was the first effort under
the Data-Intensive Systems (DIS) program to deliver working silicon. The bulk of this effort can
be categorized into chip-level architecture research and VLSI implementation.

4.1 PIM Chip Architecture

Each DIVA PIM chip is a VLSI memory device augmented with general-purpose computing and
networking/communication hardware. Although a PIM may consist of multiple nodes, each of
which are primarily comprised of a few megabytes of memory and a node processor, Figure 2
shows a PIM with a single node, which reflects the focus of the research that was conducted on
the DIVA project. Nodes on a PIM chip share a single PIM Routing Component (PiRC) and a
host interface. The PiRC is responsible for routing parcels on and off chip. The host interface
implements the JEDEC standard SDRAM (Synchronous Dynamic Random Access Memory)
protocol so that memory accesses as well as parcel activity initiated by the host appear as
conventional memory accesses from the host perspective. More details of the PiIRC can be found
in [Kang00] and more information on the host interface is given in [Draper02a].

Figure 2 also shows two interconnects that span a PIM chip for information flow between nodes,
the host interface, and the PIRC. Each interconnect is distinguished by the type of information it
carries. The PIM memory bus is used for conventional memory accesses from the host processor.
The parcel interconnect allows parcels to transit between the host interface, the nodes, and the
PiRC. Within the host interface, a parcel buffer (PBUF) is a buffer that is memory-mapped into
the host processor's address space, permitting application-level communication through parcels.
Each PIM node also has a PBUF, memory-mapped into the node's local address space. More
information on the PBUF design is found in Appendix A2: DIVA Node Architecture manual.
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Figure 2. DIVA PIM chip organization

Figure 3 shows the major control and data connections within a node, with the 256-bit memory
data bus as the centerpiece. The DIVA PIM node processing logic supports single-issue, in-order
execution, with 32-bit instructions and 32-bit addresses. There are two datapaths whose actions
are coordinated by a single execution control unit: a scalar datapath that performs sequential



operations on 32-bit operands, and a WideWord datapath that performs fine-grain parallel
operations on 256-bit operands. Both datapaths execute from a single instruction stream under
the control of a single 5-stage DLX (Deluxe)-like pipeline. The instruction set has been designed
so both datapaths can, for the most part, use the same opcodes and condition codes, generating a
large functional overlap.
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Figure 3. DIVA PIM node architecture

Each datapath has its own independent general-purpose register file, 32 32-bit registers for the
scalar datapath and 32 256-bit registers for the WideWord datapath, but special instructions
permit direct transfers between datapaths without going through memory. Although not
supported in the initial DIVA prototype, floating-point extensions to the WideWord datapath will
be provided in future implementations. The memory arbiter/controller is responsible for
generating proper control signals to the memory macro. Its functions include initiating refresh
cycles as needed and arbitrating between the host memory port and the execution control unit for
access to the memory macro. Furthermore, it tracks and maintains an open row in the DRAM
macro to enable page-mode accesses as often as possible. Another key component of each PIM
node is an instruction cache, which was included in the DIV A design to keep instruction accesses
to the memory macro from interfering with data accesses as much as possible. Each node also
contains a parcel buffer (PBUF), as described earlier. The following sections briefly discuss the
scalar and WideWord subcomponents, highlighting some of the more notable features. More
detail on these microarchitectures as well as those of other subcomponents of the DIVA PIM
chip can be found in the Appendices.

4.1.1 Microarchitecture: The Scalar Processor

As noted earlier, the combination of the execution control unit and scalar datapath is a standard
RISC processor and serves as the DIVA scalar processor, or microcontroller. It coordinates all
activity within a DIVA PIM node. This section details the microarchitecture of this component
by first presenting an overview of the instruction set architecture, followed by a description of
the pipeline and discussion of special features. More detail of the instruction set can be found in
Appendix Al: DIVA Instruction Set Manual.

Instruction set architecture overview



Much like the Hennessy and Patterson DLX architecture, most DIVA scalar instructions use a
three-operand format to specify two source-registers and a destination register, as shown in
Figure 4. For these types of instructions, the opcode generally denotes a class of operations, such
as arithmetic, and the function denotes a specific operation, such as add. The C bit indicates
whether the operation performed by the instruction execution updates condition codes. In lieu of
a second source register, a 16-bit immediate value may be specified, as shown in Figure 5. The
scalar instruction set includes the typical arithmetic functions add, subtract, multiply, and divide;
logical functions AND, OR, NOT, and XOR; and logical/arithmetic shift operations. In addition,
there are a number of special instructions, described in Special Features section below.
Load/store instructions adhere to the immediate format, where the address for the memory
operation is formed by the addition of an immediate value to the contents of rA, which serves as
a base address. The DIVA scalar processor does not support a base-plus-register addressing
mode because such a mode requires an extra read port on the register file for store operations.
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Branch instructions use a different format. The branch target address may be PCrelative, useful
for relocatable code, or calculated using a base register combined with an offset, useful with
table-based branch targets. In both formats, the offset is in units of instruction words, or 4 bytes.
By specifying the offset in instruction words, rather than bytes, a larger branch window results.
To support function calls, the branch instruction format also includes a bit for specifying linkage,
that is, whether a return instruction address should be saved in R31. The branch format also
includes a 3-bit condition field to specify one of eight branch conditions: always, equal, not
equal, less than, less than or equal, greater than, greater than or equal, or overflow.

Pipeline description and associated hazards

A high-level schematic of the pipeline execution control unit and scalar datapath is shown in
Figure 6. The pipeline is a standard DLX-like 5-stage pipeline, with the following stages: (1)
instruction fetch; (2) decode and register read; (3) execute; (4) memory; and, (5) write-back.
Figure 6 indicates these five stages with respect to the data-path registers and also indicates the
write-back and bypass datapaths. The pipeline controller contains the necessary logic to handle
data, control, and structural hazards. Data hazards occur when there are read-after-write register



dependences between instructions that co-exist in the pipeline. The controller and datapath
contain the necessary forwarding, or bypass, logic to allow pipeline execution to proceed without
stalling in most data dependence cases. The only exception to this generality involves the load
instruction, where a "bubble” must be inserted between the load instruction and an immediately
following instruction that uses the load target register as one of its source operands.

Control hazards occur for branch instructions. Unlike the DLX architecture, which uses explicit
comparison instructions and testing of a general-purpose register value for branching decisions,
the DIVA design incorporates condition codes that may be updated by most arithmetic/logical
instructions. The condition codes used for branching decisions are:

e EQ - setif the result is zero

e LT -setif the result is negative

e GT - set if the result is positive

e OV - set if the operation overflows

The DIVA pipeline design imposes a 1-delay slot branch, so that the instruction following a
branch instruction is always executed. Since branches are always resolved within the second
stage of the pipeline, no stalls or bubbles are associated with branch instructions.

Since the general-purpose register file contains 2 read ports and 1 write port, it may sustain two
operand reads and 1 result write every clock cycle; thus, the register file design introduces no
structural hazards. The only structural hazard that impacts the pipeline operation is the node
memory. Pipeline stalls may occur in the instruction fetch stage if an instruction cache miss
occurs. The pipeline will resume once the cache fill memory request has been satisfied. Likewise,
stalls occur any time a load/store instruction reaches the memory stage of the pipeline until the
memory operation is completed.
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Figure 6. Scalar datapath and pipeline stages

Special features

The novelty of the DIVA scalar processor lies in the special features that support DIVA-specific
functions. Although by no means exhaustive, this section highlights some of the more notable
capabilities.

Run-time Kernel Support

The execution control unit supports supervisor and user modes of processing and also maintains
a number of special-purpose and protected registers for support of exception handling, address
translation, and general OS (Operating System) services. Exceptions, arising from execution of
node instructions, and interrupts, from other sources such as an internal timer or external
component like the PBUF, are handled by a common mechanism.

The exception-handling scheme for DIVA has a modest hardware requirement, exporting much
of the complexity to software, to maintain a flexible implementation platform. It provides an



integrated mechanism for handling hardware and software exception sources and a flexible
priority assignment scheme that minimizes the amount of time that exception recognition is
disabled. While the hardware design allows traditional stack-based exception handlers, it also
supports a non-recursive dispatching scheme that uses DIVA hardware features to allow
preemption of lower priority exception handlers.

The impact of run-time kernel support on the scalar processor design is the addition of a modest
number of special-purpose and protected (or supervisor-level) registers and a non-negligible
amount of complexity added to the pipeline control for entering/exiting exception handling
modes cleanly. When the scalar processor control unit detects an exception, the logic performs a
number of tasks within a single clock cycle to prepare the processor for entering an exception
handler in the next clock cycle.

Those tasks include:

e determining which exception to handle by prioritizing among simultaneously occurring
exceptions,

e setting up shadow registers to capture critical state information, such as the processor
status word register, the instruction address of the faulting instruction, the memory
address if the exception is an address fault, etc,

e configuring the program counter logic to load an exception handler address on the next
clock cycle, and

e setting up the processor status word register to enter supervisor mode with exception
handling temporarily disabled.

Once invoked, the exception handler first stores other pieces of user state and interrogates
various pieces of state hardware to determine how to proceed. Once the exception handler
routine has completed, it restores user state and then executes a return-from-exception instruction,
which copies the shadow register contents back into various state registers to resume processing
at the point before the exception was encountered. If it is impossible to resume previous
processing due to a fatal exception, the run-time kernel exception handler may choose to
terminate the offending process.

Interaction with the WideWord Datapath

There are a number of features in the scalar processor design involving communication with the
WideWord datapath that greatly enhance performance. The path to/from the WideWord datapath
in the execute stage of the pipeline facilitates the exchange of data between the scalar and
WideWord datapaths without going through memory. This capability distinguishes DIVA from
other architectures containing vector units, such as AltiVec. This path also allows scalar register
values to be used to specify WideWord functions, such as indices for selecting subfields within
WideWords and indices into permutation look-up tables. Instead of requiring an immediate value
within a WideWord instruction for specifying such indices, this register-based indexing
capability enables more intelligent, efficient code design.

There are also a couple of instructions that are especially useful for enabling efficient data

mining operations. ELO, encode leftmost one, and CLO, clear leftmost one, are instructions that
generate a 5-bit index corresponding to the bit position of the leftmost one in a 32-bit value and
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clear the leftmost one in a 32-bit value, respectively. These instructions are especially useful for
examining the 32-bit WideWord condition code register values, which may be transferred to
scalar general-purpose registers to perform such tests. For instance, with this capability, finding
and processing data items that match a specified key are accomplished in much fewer
instructions than a sequence of bit masking and shifting involved in 32 bit tests, which is
required with conventional processor architectures.

There are some variations of the branch/call instructions that also interact with the WideWord
datapath. The BA (branch on all) instruction specifies that a branch is to be taken if the status of
condition codes within every subfield of the WideWord datapath matches the condition specified
in the BA instruction. The BN (branch on none) instruction specifies that a branch is to be taken
if the status of condition codes within no subfield of the WideWord datapath matches the
condition specified in the BN instruction. With proper code structuring around these instructions,
inverse forms of these branches, such as branch on any or branch on not all, can also be affected.

Miscellaneous Instructions

There are also several other miscellaneous instructions that add some complexity to the
processor design. The probe instruction allows a user to interrogate the address translation logic
to see if a global address is locally mapped. This capability allows users who wish to optimize
code for performance to avoid slow, overhead-laden address translation exceptions. Also, an
instruction cache invalidate instruction allows the supervisor kernel to evict user code from the
cache without invalidating the entire cache and is useful in process termination cleanup
procedures. Lastly, there are versions of load/store instructions that “lock” memory operations,
which are useful for implementing synchronization functions, such as semaphores or barriers.

4.1.2 Microarchitecture: The WideWord Processor

The combination of the execution control unit and WideWord datapath is regarded as the
WideWord Processor. This component enables superword-level parallelism on wide words of
256 bits, similar to multimedia extensions such as MMX and AltiVec. This fine-grain parallelism
offers additional opportunity for exploiting the increased processor-memory bandwidth available
in a PIM. Selective execution, direct transfers to/from other register files, integration with
communication, as well as the ability to access main memory at very low latency, distinguish the
DIVA WideWord capabilities from MMX and AltiVec. This section details the
microarchitecture of this component by first presenting an overview of the instruction set
architecture, followed by a brief description of the pipeline. More detail can be found in
[Draper02a].

WideWord Instruction set architecture
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Figure 7. WideWord instruction format
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As shown in Figure 7, most DIVA WideWord instructions use a three-operand format to specify
two 256-bit source registers and a 256-bit destination register. The opcode generally denotes a
class of operations, such as arithmetic, and the function denotes a specific operation, such as add
or subtract. The C bit indicates whether the operation performed by the instruction execution
updates condition codes. The W field indicates the operand width, allowing WideWord data to
be treated as a packed array of objects of eight, sixteen, or thirty-two bits in size. This
characteristic means the WideWord ALU (Arithmetic Logic Unit) can be represented as a
number of variable-width parallel ALUs. The P field indicates the participation mode, a form of
selective subfield execution that depends on the state of local and neighboring condition codes.
Under selective execution, only the results corresponding to the subfields that participate in the
computation are written back, or committed, to the instruction's destination register. The
subfields that participate in the conditional execution of a given instruction are derived from the
condition codes or a mask register, plus the instruction's 2-bit participation field.

The WideWord instruction set consists of roughly 30 instructions implementing typical
arithmetic instructions like add, subtract, and multiply; logical functions like AND, OR, NOT,
XOR; and logical/arithmetic shift operations. In addition, there are load/store and transfer
instructions that provide for rich interactions between the scalar and WideWord datapaths.

Some special instructions include permutation, merge, and pack/unpack. The WideWord
permutation network supports fast alignment and reorganization of data in wide registers. The
permutation network enables any 8-bit data field of the source register to be moved into any 8-bit
data field of the destination register. A permutation is specified by a permutation vector, which
contains 32 indices corresponding to the 32 8-bit subfields of a WideWord destination register. A
WideWord permutation instruction selects a permutation vector by either specifying an index
into a small set of hard-wired commonly used permutations or a WideWord register whose
contents are the desired permutation vector. The merge instruction allows a WideWord
destination to be constructed from the intermixing of subfields from two source operands, where
the source for each destination subfield is selected by a condition specified in the instruction.
This merge instruction effects efficient sorting. The pack/unpack instructions allow the
truncation/elevation of data types and are especially useful in pixel processing.

Pipeline description

Identical to and tightly integrated with the scalar pipeline, the pipeline of the WideWord datapath
is a standard DLX-like 5-stage pipeline, with the following stages: (1) instruction fetch; (2)
decode and register read; (3) execute; (4) memory; and, (5) writeback. Data hazards occur when
there are read-after-write register dependences between instructions that co-exist in the pipeline.
The controller and datapath contain the necessary forwarding, or bypass, logic to allow pipeline
execution to proceed without stalling in most data dependence cases. Register forwarding is
complicated somewhat by the participation capability. Participation status must be forwarded
along with each subfield to effect correct forwarding.

4.2 VLSI Development

From a host of potential foundries for fabrication, the selections were quickly narrowed down to
two possible embedded DRAM candidates early in the DIVA project: IBM and TSMC. IBM
clearly had more experience in the embedded DRAM arena, so early efforts in the DIVA VLSI
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development task targeted the IBM CMOS7LD 0.25«cm embedded DRAM process, and a scalar
processor test chip was fabricated in HP CMOS14 0.5«cm technology through MOSIS. (The HP
process was used for early prototyping because its logic speed matched that of the IBM process,
and prototypes could be built very cheaply through this route.) A test vehicle on the TSMC
0.250cm process was also fabricated to gain familiarity with that technology. Although the DIVA
team entered into a research collaboration contract with the Blue Gene team at IBM Watson, the
DIVA project was not granted access to IBM fabrication capability in a timely manner.
Therefore, in the final half of the project, the VLSI development for the integrated PIM
prototype targeted the TSMC 0.18ocm process. This process was introduced with an embedded
DRAM capability, but that capability was later phased out, so the DIVA prototype PIM was
fabricated with SRAM (Synchronous Random Access Memory) as a placeholder for embedded
DRAM.
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Figure 8. Prototype PIM signal summary

As part of the core VLSI development task, a new CAD tool flow was installed. To
accommodate rapid design of the PIM chip, we relied heavily on the ability to specify the chip
design with RTL-level VHDL and synthesize this description into a gate-level netlist of standard
cells. The VHDL was optimized and synthesized using Synopsys Design Analyzer, targeting the
Artisan standard cell library for TSMC 0.18ocm technology. The entire chip was placed and
routed, including clock tree routing, with Cadence Silicon Ensemble. Physical verification,
including DRC, LVS, and antennae checking, was performed with Mentor Calibre. Back-
annotated simulation to verify correct operation and timing of the design was performed within
the Cadence Verilog environment.

A description of the external signals of the first prototype PIM chip is shown in Figure 8. There
are primarily two external interfaces: a host interface for implementing the JEDEC SDRAM
standard and the PiRC signals for inter-PIM communication. Additionally, there are signals for
configuring and monitoring the PLL (Phase Locked Loop) clock multiplier, testing the node
SRAMs, and reset and interrupt capabilities.
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This prototype chip implements one PIM node (consisting of a 32-bit scalar processor, 256-bit
WideWord Unit, 4Kbyte instruction cache, 8Mbit node SRAM, and node parcel buffer), PIM
routing component (PiRC), and host interface (containing an external SDRAM interface and host
parcel buffer). The design was submitted on August 23, 2001 for fabrication on a TSMC 0.18oxcm
generic process offered through MOSIS. The intellectual property used in the chip design is from
three different vendors:
e Artisan
o standard cells for synthesized logic

pads
32-word x 32-bit scalar register file
32-word x 256-bit WideWord register file (implemented as two x128 banks)
4kbyte SRAM for instruction cache core (implemented as two banks of
128 word x 128-bit SRAMS)

o0 128 word x 20-bit SRAM for instruction cache tags
e Virage Logic

0 8 Mbit SRAM (with redundancy to allow repair) (implemented as two banks of

32768 words x 128 bits)

o fuse boxes for the configuration of the SRAM
e NurLogic

0 PLL for clock multiplication and deskewing

O O0O0OO0O0

The resulting chip is 9.8mm on a side and contains approximately 200,000 placeable objects,
where a placeable object is anything from a 2-transistor inverter to a 4 Mbit SRAM macro. The
chip contains approximately 55 million transistors, with 2 million in the logic and smaller
SRAMs and 53 million in the 8 Mbits of node SRAM. The chip contains 352 pads: 240 signal
1/0, 56 grounds, 28 pad Vdd (3.3V), and 28 core Vdd (1.8V).

The silicon die were received near the end of October 2001, and packaged chips were received
near the end of November 2001. Photos of the die and package are shown in Figure 9. Due to
delays in procurement of test fixtures, full-scale testing did not commence until February 2002.

1

Figure 9. DIVA PIM prototype chip

The preliminary testing was conducted with the use of a custom-built PCB in an incremental
fashion. First, with all functional units in reset, we applied power and an input clock signal to test
the PLL clock multiplier, IP purchased from NurLogic. The PLL was functional over a wide
range of frequencies, voltages, and all possible configurations of input settings. This verification
proved that we had successfully integrated IP from a 3r-party vendor into our design flow. We
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then proceeded to functional testing with the use of an HP 16702A logic analysis system. Pattern
generator modules were utilized to apply test vectors to the inputs of the chip, and timing/state
capture modules were used to sense the outputs of the chip. A photo of the lab test setup is
shown in Figure 10. The chip was tested for functionality at a testbench speed of 80MHz.

- ————E. e —
Figure 10. PIM testbench setup

We first verified the operation of the memory access capability of the PIM chip by performing
writes/reads to the internal memory through the host memory interface of the PIM chip. After
verifying normal memory operation for the lowest 64KB region of memory, we proceeded to
PIM processor checkout. The procedure consisted of downloading code through the host
memory interface, releasing the PIM processor from reset to execute the code, and then verifying
correct operation by reading back results through the host memory interface. After confirming
the validity of this debugging approach through a small arbitrary code example, we proceeded to
test the execution of the Cornerturn core loop, which had been coded to exploit novel features of
the DIVA PIM WideWord Unit. Reading the memory locations that contained the output matrix
and verifying that the input matrix had indeed been transposed confirmed successful execution of
the code. (The logic analyzer display showing the start of the transposed matrix is shown in
Figure 11). We then began some speed testing to determine the clock frequency operating range
of the PIM chip. We were able to execute the Cornerturn application at 160MHz while
dissipating only 800mW. Even in this limited test setup, the chip achieved a peak 1.28GOPS (32-
bit ops) and 5.12 GB/s memory bandwidth. After passing these initial tests, the chip was released
to the system integration team where many more results were achieved (refer to the system
integration section for details).

15



f Wavelom=1> WEE

File Edit Optians Hclp|
| Hevigabe | Run ||

Search ] Goto I Morhkersz ] Commznt = I fAnaluziz I Mixzd Signal l

Labelladdr X valus g when | Entering x| HE:-cr_l Frey

Advancad saa‘rchingn,l Set 1 | Set L'.2|

Sgcondz/ ol v |°5ZD.DI:ICI ne :I Dslay |22|‘J¢51¢l uz :I

dlo =11
dhl =1l
ros odl
cas all
adoir =11

we wll

ce all

cka all

Ju F F

Figure 11. Display of read operation “cornerturn output matrix

4.3 Ongoing and Future Work

While finishing preparations for testing the first chip, we were also working on the designs of the
address translation unit and floating point capability for the second turn of the chip. The address
translation was completed and integrated into the existing design and validated through
simulation, including exception handling related to address faults within a few months. After
performing some initial sizing estimates, we realized that we would not be able to fit 4 parallel
double-precision floating-point units in our WideWord area budget, so we targeted 8 single-
precision units. As technology continues to scale, future PIMs may revisit the possibility of
WideWord double-precision capability. Each single-precision unit implements the basic floating-
point functions: add, subtract, multiply divide. We used the MIT RAW design as a guideline, but
due to DIVA pipeline constraints were not able to use the RAW design as is. We spent most of
our time on the design of the divider and then optimizing to merge the subcomponents to share
resources that all subcomponents need, such as operand formatting, rounding, and normalization.
We selected a divider design based on a Taylor series expansion approach developed by
Liddicoat at Stanford [Liddicoat02]. This design achieved a fairly high-performance divide
capability while minimizing silicon area. We synthesized the entire FPU (Floating Point Unit)
design, and the resulting post-synthesis area projections indicated an area of 0.32 mm: for each
single-precision floating-point unit, or a total of approximately 2.5 mma2 for eight such units in
the WideWord datapath.

We re-architected the exception-handling unit to accommodate integration of the exceptions
from the WideWord floating-point units. Each of the eight single-precision floating-point units

16



of the WideWord datapath reports five types of exceptions: divide by zero, inexact, invalid,
overflow, and underflow. The only inconsistency with the IEEE-754 standard is the underflow
exception, which we use in place of supporting denormalized numbers and arithmetic. We have
combined the overflow and underflow status outputs into one value called precision status so that
the resulting 4 exception types of all 8 single-precision FPUs can be contained in one 32-bit
register. We have defined a new special-purpose register (SPR) in our architecture to capture this
information.

Work is now continuing under separate funding to implement the exception integration and
thereby complete the integration of floating-point capability into the DIVA design. Under the
HPCS-funded Godiva project, a DDR SDRAM interface is also being added to the rev 2 PIM
chip for its insertion into an Itanium2-based HP Long’s peak server.

5. Compiler

We have developed a compiler for the DIVA PIM processor that generates optimized code in the
DIVA ISA. As will be discussed in the context of system integration, the DIVA compiler
backend is based on the Gnu GCC compiler, ported from the PowerPC toolset. GCC is a
commonly used optimizing compiler, but it targets conventional scalar instruction sets. To
support optimizations targeting the unique bandwidth-exploiting features of the DIVA ISA, we
developed front-end compiler technology that performs DIVA-specific optimizations, as
captured in Figure 12.

page-mode memory
accesses

scalar registers
32x32b (128B)

calar functional unit

I compiler-controlled caching

I superword-level parallelism I

Figure 12. DIVA-specific compiler optimizations
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In Figure 12, the ovals represent the functional units of the DIVA PIM chip. As has been
previously described in the architecture discussion, there are both a 32-bit scalar functional unit
and a separate 256-bit wide functional unit. The shaded rectangles in the figure represent on-chip
storage. There is the DRAM array, which in today’s technology could have up to 32Mbytes,
although in our prototype it is a LMbyte SRAM array, as previously described. A 4Kbyte I-cache
holds the instruction stream, so that memory accesses are predominantly focused on the program
data. In addition, there are separate register files associated with each functional unit, a 32-
element, 32-bit scalar register file, and a 32-element, 256-bit wide register file.

The unshaded rectangles in the figure point to our compiler’s targets of optimization. DIVA’s
Wide functional unit has operations similar to a multimedia extension architecture such as the
PowerPC AltiVec, where the data type is larger than a machine word, and can be configured to
perform SIMD parallel operations on different field widths, 8-bit, 16-bit and 32-bit. This type of
fine-grain parallelism is referred to as superword-level parallelism (SLP). Optimizations
targeting SLP are the first priority of our compiler. The second priority relates to the WideWord
register file, which is 1Kbyte of storage very close to the processor, and the fact that our
architecture does not have a data cache. Our target applications that can exploit the bandwidth of
the WideWord datapath could also benefit from the increased bandwidth and lower latency of a
data cache, as compared to accessing from the DRAM array. For this same class of applications,
however, compiler technology can also derive the data access patterns and manage storage
explicitly. For this purpose, we have developed new optimizations in the DIVA compiler to
support compiler-controlled caching in the WideWord register file. Further optimization benefits
are obtained from exploiting spatial locality in the DRAM array. When the application accesses
memory, the latency of a memory access varies depending upon whether the access is nearby the
previous access. The DRAM first selects a page or row (assumed to be 2048 bits) and then a
256-bit or 32-bit column within that row. Accesses to the same row as the previous access are
referred to as pagemode accesses, and have a 3x lower latency than other accesses, which are
said to be in random mode. Our compiler performs optimizations to maximize the number of
memory accesses that are in page mode.

Figure 13 illustrates the components of the DIVA compiler. The DIVA front-end compiler is
based on SUIF, a research compiler infrastructure developed at Stanford University. The SUIF-
based DIVA front end takes as input a C or Fortran program and generates optimized code in
MrC, a C-like language with extensions for superword-level parallelism developed for the
PowerPC AltiVec. The optimized MrC code is the input to the DIVA compiler backend, as
shown in Figure 13.

The DIVA compiler backend is based on a superword-extended AltiVec GCC backend available
from Motorola. The AltiVec GCC backend takes MrC code and generates AltiVec vector
instructions similar to DIVA WideWord instructions. To generate DIVA PIM code, we
integrated the DIVA GCC backend that previously generated DIVA scalar code only with the
AltiVec GCC backend. The final DIVA GCC backend generates code that uses both PIM scalar
and WideWord instructions.

Figure 13 shows the DIVA GCC backend and the AltiVec GCC backend for illustration purposes,
as both take optimized code from the SUIF-based front-end compiler. The AltiVec backend was

18



a useful tool for testing and tuning optimizations performed by the SUIF-based front-end
compiler during the time the DIVA PIM chip was not yet available for software experiments.

The remainder of this section describes the optimizations performed by our frontend compiler,
the implementation, and performance results.

'

AltiVec

backend
superword- superword-
extended extended
GCC GCC

Macintosh
G4
executable

Figure 13. DIVA PIM Compiler Technology

5.1 DIVA PIM front-end compiler

To develop a DIVA PIM compiler that automatically generates optimized code targeting
superword-level parallelism, we have collaborated with Saman Amarasinghe and Samuel Larsen
at MIT. The initial MIT SUIF-based compiler automatically recognizes SLP and generates
optimized code targeting the PowerPC AltiVec multimedia instructions. The DIVA compiler is
built upon the MIT-SLP implementation and generates code targeting DIVA’s WideWord
instructions.

In addition to superword-level parallelism, the DIVA SUIF-based compiler performs
optimizations for compiler-controlled caching in the wide register file. We developed and
implemented new analyses for identifying temporal and spatial reuse of data in loop nest
computations. Our compiler performs a new optimization called superword replacement,
whereby accesses to superwords in memory are replaced by accesses to temporary registers, so
that the DIV A backend register allocator tries to keep these temporaries in wide registers. This
approach adapts related techniques for exploiting temporal reuse in scalar registers, but must also
account for parallelism and spatial reuse.
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The DIVA SUIF-based front-end compiler automatically generates optimized MrC code for six
scientific/multimedia benchmarks: TOMCATV and SWIM from the SPEC'95 benchmark suite,
and the media kernels VMM (vector-matrix multiply), MMM (matrix-matrix multiply), FIR
(Finite Impulse Response Filter) and YUV (RGB to YUV conversion).

We also completed an implementation and experiment in our DIVA compiler to automatically
reorder memory accesses to achieve page-mode memory accesses, rather than random-mode
memory accesses, and thus greatly reduce memory latency. The compiler unrolls inner loops and
reorders memory accesses when there are no data dependencies that prevent doing so, such that
accesses within the same page are performed consecutively. On four of the above benchmarks,
VMM, MMM, YUV and FIR, we observed speedups ranging from 1.25 to 2.19X on the DIVA
simulator, as compared to not performing the reordering of memory accesses. This work has
been reported in two publications [Chame00][Shin02b].

Under DIVA funding, we also began an evaluation of requirements to extend MIT-SLP so that it
can parallelize more programs of interest, such as the DIS Transitive Closure stressmark and
NAS CG. We have identified the need to extend MIT-SLP to support parallelization of
constructs containing conditionals for Transitive Closure, and to optimize movement of data
between scalar and wide register files, since movement between register files is not supported in
the AltiVec.

5.2 DIVA PIM backend compiler

As the AltiVec GCC backend was an experimental and unsupported system, we encountered a
number of challenges in merging the DIVA GCC backend with the AltiVec component.
Determining which GCC patches to integrate and which to omit required a lot of information
gathering and trial-and-error. We successfully completed the integration, and began porting the
AltiVec GCC backend to generate DIVA WideWord code. Under DIVA funding, we
implemented a subset of DIVA WideWord instructions and the GCC backend generated
WideWord code for VMM, a kernel that performs a vector-matrix multiply. The AltiVec version
of the compiler has generated code for many more applications, as discussed in more detail
below.

We have performed extensive experiments with the optimized code generated by our compiler,
for both DIVA and AltiVec. The experiments were performed both in an instruction simulator of
the DIVA ISA and in the PowerPC G4 (with an AltiVec). The optimizations for data reuse in
WideWord registers result in a reduction in scalar memory accesses of over 90% for the four
kernels and over 35% in SWIM and TOMCATV. In addition, we observe a reduction of
WideWord memory accesses of over 50% for three of the four kernels, and over 85% in SWIM
and TOMCATYV. These reductions indicate that even more improvement can be expected on
DIVA, where there is no data cache. On the AltiVec, overall we are showing speedups ranging
from 1.7X to 12.3X over scalar execution, with an average of 4.2X. Speedups due to our
compiler optimizations for compiler-controlled caching go from 1.3 to 2.8, with an average of =
2.2, over the MIT-SLP compiler upon which we base our implementation. This work has been
reported in three publications [Chame00][Shin02a] [Shin03].
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5.3 Additional Compiler Research

Beyond the node compiler implementation, we planned a long-term strategy for system-level
compilation (i.e., host and multiple PIMs) that is being pursued under separate funding. As was
discussed in the context of the DIVA system architecture, we designed DIV A such that it could
be programmed using conventional solutions from parallel computing, rather than requiring a
programming paradigm specific to DIVA or to PIMs. As a system-level programming strategy,
we have adopted Unified Parallel C (UPC), a relatively new parallel programming language.
UPC was developed as a unification of the best ideas among several research C compilers that
support a global address space, and allow high-level specification of data distribution in an
SPMD (Single Program Multiple Data) abstraction for highend shared-memory, distributed-
shared-memory and even distributed-memory parallel systems. The development of the UPC
language and its implementations has been motivated by DoD interest and support. There are
several commercial UPC compilers, and there are a number of defense applications already
written in UPC. We chose UPC for all these reasons, as well as the fact that we can develop
DIVA target applications that are pointer-based in a C-based language, but cannot in other
parallel programming languages such as, for example, CoArray Fortran.

As part of future work, we are collaborating with Lawrence Berkeley Laboratories and UC
Berkeley to develop a UPC compiler for the DIVA prototype. They have an ongoing UPC
compiler effort, to develop a portable UPC compiler.

6. System Simulator

We developed a simulator of the DIVA system architecture that was used throughout the
duration of the project for several application and architectural studies. Among these studies
were the investigation of performance of data-intensive applications on DIVA, the analysis of
architectural design trade-offs and bottlenecks and studies that evaluated and provided feedback
to the design of the DIVA Instruction Set Architecture (ISA).

The DIVA system simulator (DSIM) uses RSIM (http://rsim.cs.uiuc.edu/rsim) as a framework,
with significant extensions. RSIM is an event-driven simulator that models shared-memory
multiprocessors built with state-of-the-art multiple-issue, out-of-order superscalar processors.
DSIM extensions include a simpler PIM processor with a WideWord unit, the DIVA memory
system, the parcel communication mechanism and the PIM-to-PIM interconnect. DSIM supports
the DIVA PIM ISA.

The DSIM host processor is taken directly from RSIM, as well as the host first and second-level
caches. The host processor architecture is based on the MIPS R10000, which is configured as a
four-issue processor with two integer arithmetic units, two floating-point units and one address
unit. Loads are non-blocking. It has a 32Kbyte L1 and a 1Mbyte L2 cache, both two-way
associative, with access times of 1 and 10 cycles, respectively. Both L1 and L2 caches are
pipelined and support multiple outstanding requests to distinct cache lines.

The host is connected to the DIVA memory system via a split-transaction, 64-bit bus. The
memory system consists of the aggregation of all PIM memories, where each local memory is
visible from both host and local PIM processor. DSIM maintains the current open row of each
memory bank to determine the memory access type (page or random mode) and simulates
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arbitration between host and PIM accesses. The memory latencies seen by the host are 52 cycles
for page-mode accesses and 60 cycles for random mode, and include the bus transfer delay, the
memory arbitration time and the DRAM access time (4 and 12 cycles for page and random mode,
respectively). The memory latencies seen by the local PIM processor, including arbitration and
DRAM access times, are 6 and 14 cycles for page- and random-mode accesses, respectively.

DSIM also models the parcel mechanism and the PIM-to-PIM interconnection in detail.
Applications executing on DSIM have direct access to the parcel buffers via parcel handling
functions that perform the writing/reading to/from the memory mapped parcel buffers. These
parcel handling functions are part of DSIM's application library, and support the full set of parcel
buffer status reads, triggering/non-triggering writes to the send parcel buffers and
destructive/nondestructive reads from the receive parcel buffers.

The application library also supports a cache-line-flush function to enforce coherence between
the host caches and PIM memory, and synchronization functions. The functions in the
application library are linked with the application code, and their execution is simulated by
DSIM as part of the application.

The simulator parameters used in our application studies were based on the conservative
assumption that the PIM processor runs at half the speed of the host processor. Although the
inherent speed of the logic is no slower, we make this assumption because the WideWord
register accesses could impact the clock speed.

7. Application Studies

We performed several application studies, using the DIS Stressmark Suite as well as other data-
intensive or high-performance-computing benchmarks, including NAS CG and the template-
matching (TM) component of the Sandia ATR benchmark. We first describe the DIVA
implementations of the DIS stressmarks, then we present experimental results on the stressmarks
and other benchmarks, and later we discuss our earlier application studies.

7.1 DIS Stressmarks

This section contains a description of our implementation of the Cornerturn, Pointer, Transitive
Closure and Neighborhood stressmarks. For each of these stressmarks, we describe how the
stressmark is mapped to DIVA, including computation and data partitioning, host-and-PIM and
PIM-to-PIM communication and synchronization. We also describe how the WideWord unit is
used, when applicable (Pointer and Neighborhood do not use the PIM WideWord unit).

Cornerturn.

The DIVA implementation of Cornerturn performs a hierarchical matrix transpose, where the
matrix is partitioned into blocks and each block is assigned to a PIM node. The transpose of each
block is computed by partitioning the block into sub-blocks, which are then transposed in
WideWord registers using permutation operations. We present below a simplified
implementation, which is valid for square matrices only.

The host performs the initial block partitioning, keeping a table with the assignment of blocks to
PIMs, and coordinates synchronization between host and PIMs. In the first phase of the
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computation, each PIM computes the transpose of its local block. After that each pair of PIMs
owning blocks that need to be swapped to form the transposed matrix communicate using the
PIM-to-PIM network.

The local block transpose is performed as a set of transposes of 8x8 sub-blocks (except for block
sizes that are not multiple of the number of matrix elements that fit in a WideWord register). For
the out-of-place transpose, each 8x8 sub-block is loaded into the WideWord register file (an 8x8
matrix with 32-bit elements requiring 8 WideWord registers), and transposed via a sequence of
permutation operations. The transposed sub-block is then stored back in memory at the target
location. In the in-place transpose (of square blocks) two subblocks of size 8x8 are loaded in
WideWord registers, each sub-block is transposed in registers, and then the transposed sub-
blocks are stored back in memory, swapping locations to form the transposed block. This
implementation takes advantage of the large capacity of the WideWord register file, avoiding
loads and stores to memory during the transpose of each 8x8 sub-block.

After computing its local transposed block, each PIM exchanges its transposed block with the
PIM that owns the location of the block in the transposed matrix. For example, for a square
matrix divided into four blocks where block-00 is assigned to PIM-0, block-01 to PIM-1, block-
10 to PIM-2 and block-11 to PIM-3, PIM-1 exchanges its transposed block with PIM-2. PIM-0
and PIM-3 keep their transposed blocks since they should remain in the same location in the
transposed matrix.

The communication phase is performed in 2 steps: in the first step PIMs owning blocks in the
upper triangular sub-matrix send their blocks to PIMs owning blocks in the lower triangular sub-
matrix; the second step completes the exchange of blocks with PIMs in the lower triangular sub-
matrix sending blocks to PIMs in the upper triangular sub-matrix.

Finally, this implementation of Cornerturn avoids contention on the PIM-to-PIM network by
assigning each pair of blocks that will exchange locations in the transposed matrix to neighbor
PIMs. This assignment is based on the fact that communication occurs between fixed pairs of
PIMs, and that when assigning a block to a PIM it is possible to determine the location of its
transposed block in the transposed matrix, and then assign the block corresponding to this
location to the nearest PIM available.

Our HOST version of Cornerturn shows high memory stall times for input sizes that do not fit in
the host L2 cache. This application has very little temporal reuse, since each matrix element is
accessed a few times only during each matrix transpose. Thus primarily spatial reuse is
exploited in cache, and each new cache line is only reused a few times. In the PIM version, the
WideWord datapaths also exploit the available spatial reuse. Furthermore, the WideWord
loads/stores and operations on eight matrix elements at a time also reduce the number of accesses
to memory. Finally, the latency seen by the PIM processor is lower than that suffered by the host
for large input sizes. For example, a 1024x1024 matrix is four times larger than the host L2
cache, resulting in memory stall times corresponding to 98% of the host execution time. On the
other hand, the 1-PIM version spends 40% of the execution time stalled for memory, due to the
lower on-chip latencies and a reduction on the number of memory accesses (the average latency
seen by the PIM is 11.6 cycles, since most of the accesses are in random mode).
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Transitive Closure

The implementation of Transitive Closure for DIVA is based on the DIS sample code, and uses a
dense matrix to represent the distance graph. It exploits both fine-grain parallelism, by
performing WideWord arithmetic operations on eight 32-bit elements of the matrix in parallel,
and coarse-grain parallelism, by partitioning the data and computation among PIM nodes.

The host processor computes the matrix partition and coordinates synchronization. Matrices din
and dout are partitioned by rows and a set of consecutive rows is assigned to each PIM node. For
the main loop nest of Transitive Closure, for each iteration of the outer loop k, each PIM node
performs the inner-loop computation (loops i and j) on its local set of rows, using a copy of row k
previously sent by the PIM that owns row k. Therefore, for each iteration of loop k, the PIM node
that owns row k sends a copy of this row to all other PIMs. All PIM nodes synchronize on each
iteration of loop k, after the communication phase.

The multicast of a matrix row from one PIM to all other PIMs is performed using the multicast
mode supported by the DIVA parcel buffer mechanism. The sender processor writes a parcel
payload to the parcel buffer, and then writes a parcel header for each destination PIM. The write
to the parcel header triggers the sending of the parcel to the specified destination. This multicast
mode allows the sender processor to write the parcel payload only once, reducing the cost of
assembling parcels in the parcel buffer.

The local computation on each PIM node takes advantage of the WideWord unit in the
computation of the minimum value of each pair of elements from two matrix rows. Selective
execution using a WideWord operation (wmrgcc) merges the contents of two WideWord
registers according to condition-code bits, allowing an efficient computation of the minimum
value of each pair of elements of two WideWord operands.

Finally, for both the HOST and PIM versions, the inner loops (loops i and j) of the main loop
nest were interchanged, so that the HOST can benefit from spatial locality at the caches, and
PIMs can exploit spatial reuse in WideWord registers.

Our PIM implementation benefits from fine-grain and coarse-grain parallelism, and also from the
higher bandwidths available on chip. For example, the HOST version for input tc05.in spends
65.2% of its execution time stalled due to cache misses, with 11.3% of the misses satisfied at the
L1 and 58.4% satisfied at the L2, resulting in an average memory latency of 6.7 cycles. The 1-
PIM version shows a higher average memory latency (9.5 cycles), but it issues less memory
accesses, since the WideWord unit is used to transfer data to/from memory and perform the
computation. Therefore the 1-PIM memory stall time is smaller than that of the HOST version.
The use of the WideWord unit also results in exploiting spatial reuse, since the matrix is
accessed with stride one in the row dimension.

Pointer

Our implementation of Pointer is based on the sample code provided by Atlantic Aerospace. We
mapped Pointer to DIVA by partitioning both threads and the field array among PIM nodes. To
reduce communication costs, PIM nodes are partitioned into groups so that each group has a
copy of the array; the size of each group is the minimum number of PIM nodes required to keep
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one copy of the array. For example, for a 4 MByte array and 16 PIM nodes, and assuming that
each PIM node can keep 2 MBytes of data, the PIMs would be partitioned into 8 groups of 2
PIMs, each group keeping a copy of the array.

Each PIM node is initially assigned a set of threads. Each PIM node starts a thread (from its own
set) and proceeds as follows:

1. Whena "hop" is to a location mapped to the PIM, it computes the median and next hop
as in the original sample code.

2. When a "hop" is to a location mapped to a remote PIM node, it sends the ““hop"(in a
parcel) to the remote node, which will then continue hoping on this thread.

3. After sending a remote hop out, the PIM checks if it has received any parcels containing
““hops" to be executed locally. If there is a parcel, it goes to step 1.

4. When a thread is completed, the PIM node that executed the last hop marks the thread
““done™ and sends a parcel to the PIM that owns that thread signaling that the thread is
done.

Finally, the host processor checks for threads that are done and signals the PIMs when all threads
are done.

In our experiments, the HOST version performs better than the 1-PIM version when the input
size fits in the host L1 or L2 caches (as in p05.in and p20.in). The PIM version performs better
than the host version when the input data set fits in one PIM node and does not fit in the host
cache (such data is not reported since none of the DIS input sizes satisfies this condition). Our
PIM version of Pointer does not speedup when the array must be partitioned among PIMs. The
main reason our Pointer does not scale well is that the rate of communication per hops is very
small, and the local computation (an average of a couple of hops) is not enough to amortize the
cost of PIM-to-PIM communication.

Neighborhood

The Neighborhood implementation on DIVA exploits coarse-grain parallelism by partitioning
the computation among PIM nodes. Each PIM computes a partial histogram locally, and at the
end of the computation phase, the PIM nodes perform a parallel reduction to compute the final
histogram. The parallel reduction takes n-1 steps, where n is the number of PIM nodes. The
communication is scheduled to take advantage of the PIM-to-PIM interconnection topology (bi-
directional ring), avoiding contention in the network.

The 1-PIM version of Neighborhood performs worse than the host version when the image fits in
the host L2 cache, for several reasons: the memory latencies seen by the PIM are larger than the
L2 access time; the PIM nodes operate at half the speed of the host; and our implementation of
Neighborhood does not take advantage of the WideWord unit. When coarse-grain parallelism is
exploited by partitioning the computation among several PIM nodes, the PIM version speeds up
considerably with respect to the host.

7.2 Experimental evaluation

1-PIM performance

To measure the performance potential of the DIVA architecture, we examine in detail eight
benchmark applications, summarized in the Table 1.
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Table 1. Summary of the eight benchmark applications

Description Source Data Set Size WideWord Usage

) : parallelism,
Template image Sandia 4 ?g’ﬁ{'g" EE’ selective, reuse
Matching (TM) correlation temn Iat{'es in registers, page
P mode
matrix Atlantic . parallelism,
Cornerturn (CT) transpose Aerospace a i BT permutation
sparse 2M double- parallelism,
CG conjugate NAS precision floating-point,
gradient elements page mode
" Floyd's all- . parallelism,
gz:z:'t:i;'{':] paths shortest A::Lasnt; o 256 Kbytes selective, reuse
paths P in registers
Neighborhood relational Atlantic
(NH) database join | Aerospace | - 000 bytes
. image
Natural Join processing Alphatech 72 Kbytes
(NJ) .
stencil
. Atlantic
Pointer (P) random walk Aerospace 4 Mbytes
object-
oriented University of
oo7 database Wisconsin 638 Kbytes
query

These applications span a broad range of domains including scientific computing, databases and
image processing. They exhibit both coarse grain parallelism (which allows computation to be
spread across PIMs) and, in some cases, fine grain parallelism (which can be exploited through
execution in the WideWord unit). CG, Neighborhood, Pointer, OO7 and Natural Join exhibit
irregular or mixed (regular and irregular) data access patterns, resulting in high memory access
overheads on conventional architectures. Cornerturn, Transitive Closure and Template Matching
are dense matrix computations with regular access patterns, although memory bandwidth
becomes a limiting factor in exploiting the significant available parallelism. These three and CG
rely on the WideWord unit to exploit parallelism and PIM bandwidths. Hereon, we use
abbreviations for each of the program names, with a suffix -H for host and -P for PIM.
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The graph in Figure 14 summarizes 1-PIM performance as compared to execution on the
conventional host processor. Five of the eight programs speed up significantly compared against
host execution, two remain about the same, and one program is slowed down. (All programs
speed up when multiple PIMs are used.) Overall, the average speedup is 3.39X.

Speedups over host-only execution
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Figure 14. Summary of 1-PIM performance relative to host

Several factors contribute to these speedups, including the lower memory stall times on the PIM
nodes and the benefits of the WideWord unit in exploiting fine-grain parallelism and taking
advantage of page-mode memory. These factors are discussed in detail in the subsections that
follow.

Reduction in Memory Stall Time

To illustrate the impact of memory latencies on the applications’ total execution times, Figure 15
shows the busy and memory stall components of host only execution. We see from the figure
that five of the eight programs spend more than 40% of their time stalled in memory accesses.

Busy and memory stall times for host-only execution
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Figure 15. Host-only busy and memory stall times for the eight programs
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PIMs reduce memory stall time in two ways: (1) lower latency to memory; and, (2) higher
bandwidth to memory through wide loads and stores. (A third reduction occurs as a result of
coarse-grain parallelism across the PIMs.) DIVA achieves a reduction in memory stall time for
these five programs ranging from 13.89% for Natural Join to 95% for Cornerturn, as shown in
Figure 16.

Host-only and 1-PIM memory stall times
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Figure 16. Memory stall times of host-only and 1-PIM execution

The host version of Template Matching (TM-H) has a memory stall time of only 3% of its total
execution time. The reason is that the data set size fits in the L2 host cache and the working set
of each loop fits in the L1 cache, and therefore the data reuse exhibited by TM is effectively
exploited. Even though TM-H does not suffer from large memory stall times, the 1-PIM version
(TM-P) has even smaller stall times due to the high data bandwidth at the PIM node. The use of
the WideWord unit for loading/storing and operating on 256-bit objects, plus the reuse of data in
WideWord registers reduces the memory stall time to 20% of that of TM-H.

Cornerturn has a memory stall time of 90.17% when running on the host. This application has
very little temporal reuse, since each matrix element is accessed only twice (one read and one
write) during the matrix transpose. Thus primarily spatial reuse is exploited in cache, and each
new cache line is only reused a few times (1 load and 1 store per element, and 8 elements per
cache line) once loaded, and then never used again. In the PIM version, the WideWord datapaths
also exploit the available spatial reuse. Furthermore, the WideWord loads/stores and operations
on 8 matrix elements at a time also reduce the number of accesses to memory.

Finally, the latency seen by the PIM processor (average of 11.57 cycles, since most of the
accesses are in random mode) is much lower than that suffered by the host. The combination of
these factors reduces the CT-P memory stall time to 4.32% of that of CT-H.

CG also benefits from the lower memory latencies on the PIM node. Since the data set size does
not fit in the host caches and the irregular access patterns cause conflict misses, CG-H spends
85.21% of its execution time stalled due to cache misses. Although most of the misses are
satisfied at the L2 cache (51.32%), 46% of the stall time is due to accesses to the DRAM. On the
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PIM, 78% of the memory accesses are page-mode accesses, and the average latency seen by the
processor is only 5.91 cycles.

TC-P benefits from both fine-grain parallelism and the higher bandwidths available on chip. TC-
H spends 70% of its execution time stalled due to cache misses, with 47.14% of the misses
satisfied at the L1 and 52.81% satisfied at the L2, resulting in an average miss latency of 6.23
cycles. On the PIM version, the average memory latency is of 5.57 cycles, due to 67% of page-
mode accesses. In addition to lower memory latencies, TC-P also has a smaller number of
memory accesses since the WideWord unit is used to transfer the data to/from memory and
perform the computation. Therefore the memory stall time of TC-P is smaller than that of the
host version. The use of the WideWord unit also results in the added benefit of exploiting spatial
reuse; since the matrix is accessed with stride one in the row dimension.

Neighborhood shows an increase in memory stall time because the data fits in cache, and thus
the memory latency at the PIM is larger than that of the host. This increase in memory stall time
and the fact that the PIM processor runs at half the speed of the host results in a slowdown with
respect to host-only execution.

Pointer has no spatial reuse and little temporal reuse, and since the data set size is larger than the
L2 cache, P-H stalls for memory for 49.8% of its execution time, with most misses satisfied at
the DRAM. P-P has roughly the same number of loads and stores, but the average latency seen
by the PIM is much smaller than the memory latency suffered by the host, even though most of
the PIM accesses are random-mode accesses.

Natural Join has little temporal reuse and high cache miss rates, even though the data set size fits
in the L2 cache. NJ-P shows a reduction of 13.8% in memory stall times due to the lower
average latency seen by the PIM processor. OO7 also has almost no temporal reuse and OO7-H
suffers from a large amount of cache misses. On the PIM version the memory stall time is
reduced by 62.8%, again as a result of the smaller on-chip latency.

Benefits from WideWord Unit and Page Mode Memory Accesses.

To isolate the benefits of the WideWord unit, we compare scalar versions against versions tuned
to take advantage of the WideWord unit and page-mode memory accesses for the four programs
that utilize the wide datapaths. These results are shown in Figure 17. Speedups are significant,
ranging from1.19X for CG up to 17.96X for TM, with an average improvement of 9.93X.
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Speedup of 1-PIM with superword-level parallelism over 1-PIM scalar
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Figure 17. Benefits of WideWord instructions and page-mode memory accesses

CG's key computation is a sparse matrix-vector multiply. Due to the mixed regular/irregular
nature of data accesses, we only exploit fine-grain parallelism in the WideWord unit for the
regular portions of the computation. The dense vector accesses are loaded into WideWord
registers, and the dense vector multiplies are performed in the WideWord floating-point unit.
The accumulates into the sparse matrix are performed sequentially. Selective execution is used to
select the field of the WideWord operand that participates in the operation. Further performance
improvements are obtained by reordering memory accesses, grouping streaming accesses to the
dense arrays to achieve page mode memory access latencies.

The CT implementation performs a hierarchical in-place matrix transpose where the smallest
submatrices, of size 8x8, are transposed in WideWord registers. Each 8x8 submatrix is loaded
into the WideWord register file (an 8x8 matrix with 32-bit elements requiring 8 WideWord
registers), and transposed via a sequence of permutation operations. The transposed submatrix is
then stored back in memory. This implementation takes advantage of the large capacity of the
WideWord register file, avoiding loads and stores to memory during the transpose of each 8x8
submatrix.

TM computes three correlation values between an image and each of 32 templates, each
correlation corresponding to a loop nest. The DIVA implementation, which is described in detail
in [chame00], takes advantage of the inherent fine-grain parallelism by operating on 32 8-bit
image pixels and 32 8-bit template elements at a time. Since a template is represented as a 32-by-
32 matrix of 8-bit elements, an entire template row fits into one WideWord register. Also, since
the innermost loop of each loop nest traverses one template row, the entire inner loop
computation is transformed into a sequence of WideWord operations on one template row and 32
pixels of an image row, therefore eliminating the innermost loop. The accumulation of the pixel
values is achieved by a parallel reduction sum, and the result of the reduction sum is added to the
correlation value using selective execution. To exploit temporal reuse in WideWord registers, we
applied common loop transformations, particularly unroll-and-jam. In addition, we exploited
spatial reuse by shifting an image subrow held in a WideWord register by one pixel, to move the
window of the image to be compared against the template. As in CG, we also reordered memory
accesses to achieve page mode latencies.
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TC uses a dense matrix to represent the distance graph. It exploits fine-grain parallelism by
performing WideWord arithmetic operations on eight 32-bit elements of the matrix that are held
in WideWord registers. Selective execution using a WideWord operation (wmrgcc) merges the
contents of two WideWord registers according to condition-code bits, allowing an efficient
computation of the minimum value of each pair of elements of two WideWord operands. Similar
to TM, we use unroll-and-jam to obtain temporal reuse in the WideWord register file.

Overall Speedups

In Figure 18, we present speedups for four benchmarks, using the DIVA system over executing
the applications on the host processor. Our experiments show significant improvements over the
host-only execution for the three DIS stressmarks (Transitive Closure, Cornerturn and
Neighborhood) and NAS CG, with speedups ranging from 19.4X to 39.5X on a 64-node system.
These high speedups are in spite of the fact that the PIM processors are running at half the speed
of the host, and are in-order, single-issue, vs. out-of-order, 4-issue for the host.

Our CG implementation performs a parallel reduction to accumulate partial results computed
locally by each PIM processor. During this parallel reduction phase, a PIM node sends its local
copy of the result array to another PIM node. This transfer of a large amount of data to a same
destination processor is well suited for the streaming mode supported by our parcel mechanism.
In Transitive, there is a communication phase on each iteration of the outermost loop of a 3-deep
loop nest. During this phase, one PIM processor sends its local copy of a matrix row to all other
processors executing the parallel application. This communication pattern can take advantage of
the multicast mechanism supported in DIVA. Similarly, Neighborhood exhibits communication
patterns that can take advantage of the streaming parcel mode.

Speedups over Host-Only Execution
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Figure 18. Speedup on four benchmarks as a function of the number of PIMs

7.3 Earlier Application Studies

At the initial phase of the project, we derived a set of benchmarks that could be used for
evaluation purposes throughout the project. This initial set consisted of six benchmarks selected
from well-known scientific benchmark suites (NAS, Splash-2), pointer-based and database
benchmarks (Sparse from McGill and OO7 from University of Wisconsin), as well as the
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template-matching component of Sandia’'s ATR application, and the Munkres benchmark
provided by Alphatech.

To evaluate the design of the DIVA ISA, we performed experiments using this set of
benchmarks. One of the goals of the experiments was to identify useful permutation patterns for
rearranging data in the PIM wide registers, using the wide unit permutation network. The DIVA
PIM ISA supports efficient permutation operations for a set of frequently used permutation
patterns; this application study identified frequently used permutation patterns, such as data
shifting, reductions, sorting, gather and scatter, which were integrated into the DIVA PIM ISA.

In another experiment, we performed simulations on the template-matching component of
Sandia’s ATR to evaluate the benefits and trade-offs of the WideWord datapaths. Using
WideWord operations for exploiting fine-grain parallelism and data reuse in the WideWord
registers, we obtained a 13x reduction in the number of dynamic instructions and a 300x
reduction in the number of dynamic memory accesses. These improvements led to an overall
speedup of 38.3 on a system with 32 PIMs.

We demonstrated a speedup of 20.6x on the NAS CG benchmark, over execution on a high-end
workstation based on the MIPS R1000. Several architecture features of DIVA contributed to
these speedups: the lower memory latencies on PIM chips, the PIMs wide datapaths for parallel
memory operations and efficient communication, and a WideWord floating-point unit that allows
four double floating-point operations to be performed in parallel. For these experiments, we
modeled in the simulator a WideWord floating-point unit capable of performing four double
precision floating-point operations (our second DIVA chip supports eight single precision
floating-point operations performed in parallel).

We performed an initial mapping of three of the DIS benchmarks (Image Understanding, Ray
Tracing and Method of Moments) to the DIVA architecture, including data and computation
partitioning between host and PIM processors, parallelization (coarse- or fine-grain), and data
locality optimizations. We did not complete our studies of the DIS benchmarks, since soon after
performing the mappings, the DIS stressmarks were introduced and became the benchmark suite
used by all the DIS projects. We subsequently concentrated our resources on experimenting with
the DIS stressmarks. As a result, we did not produce performance results for the benchmarks.
Nevertheless, for archival purposes, we include the most interesting aspects of the mappings here.
We spent the most time on Image Understanding, which has three core computations: a
Morphological Filter that compares a kernel to an image, Region Selection based on results of
filtering, and Feature Extraction that identifies features within the regions. The first of these was
handcoded to use DIVA's WideWord unit. The second, which accounted for only a small amount
of the sequential computation, was performed on the host processor. The third part is executed in
the DIVA PIMs. For Ray Tracing, we obtained good parallel speedups by replicating a small
object database on each PIM and performing the screen pixel computation in a cyclic fashion. If
instead the object database is large and replication is not feasible, the costs of frequent irregular
communication would dominate performance.

8. Emulator
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8.1 Hardware

As part of the DIVA architecture development, an FPGA-based emulator was constructed to
provide an early platform for software development and demonstrations. This effort produced
two versions of hardware in response to track developments and requirements emerging from the
primary architecture effort.

The DIVA emulator is a single-board peripheral device designed to plug into a commercial
Linux PC system. It is based on commercial Xilinx Field- Programmable Gate Arrays (FPGAS)
and may be configured to support a wide variety of applications beyond the emulation of DIVA
processors. The emulator is designed to support rapid configuration as a DIVA PIM processor
for executing DIVA programs, however, it is also a general-purpose FPGA engine capable of
supporting a wide range of hardware modeling applications. Table 2 summarizes the hardware
features of the emulator.
Table 2. Emulator Hardware Features

FEATURE DESCRIPTION COMMENTS

FPGAs Xilinx Virtex 100% available for user configuration
XCV2000E '

Logic capacity 10 million gate Subject to logic usage & routing
equivalents complexity

Memory — DRAM | 4 megabytes per FPOA | EDO DRAM — 70 ns access

Memory — SRAM | 256 kilobytes per 15 ns access
FPGA

Memory — FPGA | 192 kilobytes per Internal — subject to logic utilization
FPGA

Power Per FPGA/DRAM/SRAM

management

Bus interface PCI v2.1 compliant AMCC 5920

Expansion 192 channels Inter-board ribbon cable

FPGA From host computer Requires Linux driver

configuration

As is shown in Figure 19 of the first version of the DIVA emulator, the emulator circuit is
constructed on two printed circuit boards stacked to form a thin sandwich. The emulator meets
PCI physical size restrictions, even with components mounted on both sides of the two boards.

Figure 19. Photograph of emulator board
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In addition to the FPGAs, DRAM and SRAM memories, and PCIl bus interface ASIC
(Application Specific Integrated Circuit), the main emulator board also contains a small Atmel
microcontroller used for power control and FPGA thermal monitoring, and voltage regulation
circuits to supply the FPGAs with power. The Atmel microcontroller can communicate with the
host system via a “mailbox” in the PCI interface ASIC, enabling the host to issue commands for
power control and clock rate generation. Figure 20 depicts how the emulator board components
are interconnected, and can be used as a guide for partitioning new logic designs so they can best
fit the available resources.

The on-board power regulation circuit delivers 1.8 VDC and 2.5 VDC to the FPGAs and other
on-board devices. The 1.8 V level is used for powering the FPGA internal circuits, while the 2.5
V rail is used to supply power to the input/output pins of the FPGAs, memories, and PCI
interface ASIC.

8.2 Software

8.2.1 Linux Driver

The Linux driver for the emulator is written to be compatible with RedHat Linux v7. The driver
provides interrupt-handling code (not used in DIVA emulations) plus basic services — device
open, read, write, etc. — Required by applications programs such as the user command program.

8.2.2 User Command Program

The emulator user control program is a simple application that provides the user with a simple
set of commands to control the emulator board. Table 3 is a short description of the commands
available to users.

Table 3. User control commands

COMMAND | ARGUMENTS | DESCRIPTION

HW Reset --- Un-contigures all FPGA logic (equivalent to system
initialization)

SW Reset === Halts FPGA operation and initializes all user state
machines

Load <file name= Loads FPGA configuration from user-specified file
(Xilinx “bit file™)

Power #.1/0 Selectively  powers  FPOA/DRAM/SRAM  zone
on/oll

(lock N={1/2]4/8]16} | Sets main FPGA clock to (40MHz/N)

Run --- Releases FPGAS to run current configuration

Stop --- [Halts current run

Step === Causes clock generator to issue one clock pulse
(single step)
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Figure 20. Schematic and photograph of emulator board interconnect details

8.2.3 Graphical User Interface
Figure 21 shows the user command program display panel. The underlying text-only command
interface has been overlaid by a simple graphical interface that allows the user to control the
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operation of the emulator, including single- or multiple-clock execution stepping, and a display
panel to report the contents of registers and memory locations within the emulated processor.
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Figure 21. Emulator GUI

8.3 Edge Detect Demonstration

The emulator was used to demonstrate execution of a simple DIVA program for edgedetection
(Sobel filtering) in a small (256x256 pixel) image. While simple in construction, this program
requires the execution of over two million DIVA instructions to complete. The photographs in
Figure 22 are typical of images used in the demonstration, and the corresponding results of edge
detection. Changing the threshold value used to determine the presence of an edge, or light/dark
transition can reduce the amount of “clutter” visible in the result.
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Figure 22. Test image input (left) & Sobel-filtered output image (right)

In this demonstration, the host system loaded the DIVA PIM program into memory— SRAM — on
the emulator card. The input image was loaded into PIM storage -DRAM - by the host system.
The emulator was directed to run the program, which used the original in PIM storage to
generate results that were placed in another region of DRAM. When execution completed, the
host could read the results directly from PIM storage and display it in a window for viewing. The
edge detect program required approximately one second to execute.

8.4 Lessons Learned
Several valuable lessons were learned during the development of the emulator.

8.4.1 Nominal Clock Rate Isn’t

According to Xilinx, the DIVA emulator was the first design to use the XCV1000 devices. It
soon became apparent that the FPGAs would not support the initial target of 40-megahertz clock
speed — the FPGA wiring resources would not consistently propagate signals. In fact, Xilinx
provided special wiring paths to propagate critical signals over long distances within the FPGA.
Unfortunately, these wiring paths constituted less than ten percent of the available wiring
resources, requiring that every new FPGA design be hand placed and routed for efficiency. As a
result, the nominal clock rate of the emulator was reduced to ten megahertz.

8.4.2 Partitioning Across FPGAs Is A Hard Problem

As the architecture evolved, it became apparent that a PIM processor with a full WideWord
datapath would not fit in a single XCV1000. This forced a large amount of effort to be expended
in partitioning the node across two FPGAs: one for the scalar (32-bit) datapath and the
instruction pipeline, one for the WideWord datapath.
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Figure 23. PIM node architecture partitioning across two Xlinx FPGAs

Figure 23 shows how the PIM processor was partitioned across the emulator FPGAs and other
board-level resources. First, while the emulator effort as started at the beginning of the DIVA
effort, the evolving nature of the architecture made it very difficult to anticipate the eventual
logic requirements of the ASIC. The first version of the emulator was built with Virtex
XCV1000 devices, which claimed to deliver a capacity of one million logic gate equivalents. As
DIVA was originally conceived, this would have been more than adequate to configure a full
DIVA PIM processor — indeed; this was the reason four copies of the FPGA/DRAM/SRAM
cluster were implemented on a single board

8.4.3 FPGA Tools Are Not Robust (WideWord Impact)

After the scalar 32-bit processor was demonstrated with the edge-detect program, the WideWord
(256-bit) datapath design was begun. This design was simplified by the fact that the scalar
datapath could be replicated and modified to implement the variable word width features of the
WideWord instructions. This modified datapath was then copied eight times to produce the
WideWord logic. At this point in the design the design tools distributed by the FPGA
manufacturer, Xilinx, broke, and did so in unpredictable ways. Compilation runs would freeze,
abort at random points in the process, or would refuse to begin. Incomplete runs would not
produce any output data, so it was essentially impossible to determine what aspect of the design
was causing the failure.
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Although Xilinx responded to some of these errors with additional releases of software, we did
not receive the level of support required to work through these problems. It was decided that the
design of the WideWord unit would have to be further partitioned to get any design to complete.

8.4.4 Cycle Accuracy Requires More Clock Cycles

The basic operating requirement for the emulator was to provide cycle-accurate results. That is,
at the end of every clock cycle, every register should contain correct results. This requirement
enabled the emulator design to be further partitioned so that the WideWord could be represented
by four 64-bit datapaths, each executing the current instruction in one quarter of the pipeline
clock. This partitioning drove the final execution speed of the emulator to 2.5 MHz, which is still
very acceptable when compared to software simulations. Figure 24 depicts the basic pipeline
clock partitioned into eight microcycles.

I‘ One pipeline clock period >|

st _ A\

Figure 24. Partitioning of clock cycles into microcycles

The colored bands illustrate how one pipeline clock can be divided into sixteen microcycles
should the need arise. The emulated DIVA PIM hardware executes WideWord instructions using
eight micro-cycles — four are used for each of the 64-bit operations, the remaining four are used
to guarantee safe data storage in the WideWord register file and to avoid bus conflicts when
making a selection among one of the four 64-bit data fields.

9. Prototype System Integration

The goal of the prototype system was to produce a stable, high bandwidth demonstration
platform for DIVA PIMs. In addition it was to provide an environment in which to debug and
performance monitor the first PIM chips.

The demonstration platform required several areas of effort including:
- Host Node Board
- Host Peripheral 10
- Host Operating System Code
- PIM-ulator
- Assembler & Linker
- PIM-Specific Code
- PIM SO-DIMM
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9.1 Host Node Board

A custom PPC 603e based node board was used from funding under the ASNT project. It
contains an MPC106 combination memory controller and host bridge for PCI. Designed at ISI
this allows straightforward modifications to both hardware and firmware for PIM operation.

9.2 Host Peripheral 1/0

The host node PCI port provides a method for off-the-shelf subsystems to be used for standard
1/0 functions. An expansion CPCI (Compact Peripheral Component Interconnect) chassis and
ethernet, video, scsi, and serial io cards were purchased and checked out with the PPC 603e-
based PCs on hand from the ASNT project.

9.3 Host Operating System Code

Though the host node has only skeleton firmware, it was thought that Linux would be able to
boot when provided with a device tree. That was necessary but not sufficient. Each peripheral
may contain its own custom firmware that must be executed in a delicate interplay with the host
node firmware (either Open Firmware or BIOS compliant) in order to be LINUX (or any other
OS for that matter) bootable. Progress has been made toward hand-executing this interplay, but
in the end the pace was insufficient for the project needs. Per the PIM Specific Code section
below, a small OS called RTEMS was to be used for the PIM and was also pressed into service
for the host node. A port of RTEMS was made to the host node and its skeleton boot firmware
that allowed TTY console communication in a matter of weeks. The port accomplished three
things: provided experience with RTEMS in an easily debugged environment (the host node),
made the host node capable of controlling and performance monitoring the PIM, and finally
provided a reasonable operating system for the development of PIM memory management code.
It was used to great effect in the DARPA Tech 2002 demonstration of the host node and PIM
noted in the summary below.

9.4 PIM-ulator

Concern over both the schedule and functionality of the first PIM chip coupled with the
existence of unique hardware led to the creation of the PIM-ulator. The ASNT Bridge node
hardware contained six powerful FPGA devices that allowed one host node to communicate to
another via external L2 cache cycles. In that way one host node could simulate the PIM
processor and memory while the other acted as a normal host node. This configuration allowed a
path for OS and memory management software and operational interaction between host and a
pseudo-PIM without the real PIM chip.

9.5 Assembler and Linker

Open source tools from the gnu project have been on plan from the project outset. The first
Assembler for DIVA was a port pulled from the MIPs branch of the gnu assembler tree due to
similarities in the Instruction Set Architecture. It was used for the Emulator area of the project
described elsewhere in this document. The port required some 660 unique versions of 94 DIVA
instructions. The assembler and linker saw standalone use in the Emulator and then more
extensive and integrated use as the chip was brought-up and tested.

40



High-level compiler support was desired for the wide-word chip functionality. The front-end of
the compiler (gcc) was pulled from the PPC branch of the gnu tree due to the availability of PPC
Altivec extensions. From this branch, the backend of the compiler was modified to produce
DIVA assembly mnemonics as input to the assembler. The two worlds of MIPs and PPC collided
as the gcc tool chain was used as a whole. The PPC-based backend was sufficiently incompatible
with the MIPs based assembler to require a port of the MIPs rewrite to the PPC assembler base.
The compiler was then able to work from the DIVA-modified Altivec extension front end,
through the DIVA-modified backend and finally out the DIVAmodified PPC assembler and
linker. This combination has seen much use in conjunction with the PIM hardware and the host
node system.

9.6 PIM Specific Code

The PIM is to have multiple threads operational on the chip under control of the Run- Time
Kernel (RTK). Initially it was to be a custom in-house design, but as the intricacies of coherent
management of memory from the host node side and PIM node side became apparent it was
decided to concentrate on those intricacies and use something off-the-shelf for the bulk of the
less novel details. RTEMS, real-time operating system initially designed for mission critical
guidance and control systems was chosen for its capabilities, small footprint and open-source
status. It was ported and built for the PPC-based host node as mentioned above under Host
Operating System Code.

The memory management code was the target of much effort leading to a paper published in the
Proceedings of the Workshop on Intelligent Memory Systems, held in conjunction with
Architectural Support for Programming Languages and Operating Systems in November 2000.
The code development of this PIM-specific code was implemented and simulated in a LINUX
environment and is to be ported to RTEMS with only a moderated amount of expected effort.

9.7 PIM SO-DIMM

After the PIM chip passed initial functional test in a test board connected to a logic analyzer, the
design of a system memory board was finished and fabricated. It consisted of two PIM chips on
an SDRAM SO-DIMM form factor memory board. The two chips may be interconnected to each
other or to other PIMs on other memory boards. Logically this interconnection is accomplished
with the Parcel buffer; physically it is with ribbon cables. These memory cards were tested out in
the host node first as common SDRAM memory, addressed with two different chip-selects from
the memory controller. With reliable operation of the memory subsystem the focus turned to
running the Cornerturn stressmark kernel on the chip.

9.8 DARPATech Demonstration

In the spring of 2002 ISI was invited to present a demonstration of DIVA PIM technology at the
DARPATech Symposium at the end of July. It provided an additional goal and focus during
those months. Ten packaged PIM chips were assembled onto five SO-DIMM memory module
boards, one shown in Figure 25.
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Figure 25. SO-DIMM memory module board.

Within a week the memory interface to both chips was proven operational. The next business day
the Cornerturn stressmark code that was verified on the PIM test board was running at speed in
the PIM on the SO-DIMM inserted into the host node demonstration system, shown in Figure 26.

Figure 26. Host node demonstration system

Many different aspects of the host node and PIM required attention and could have jeopardized
the demonstration. Memory tests that logged number of and location of last error were written
for the PIM memory to ensure enough good memory space for the code and data. The host node
memory controller required parameters for the new memory since there is no host node Open
Firmware (BIOS). The host node SO-DIMM sockets were replaced with 22.5 degree sockets to
accommodate the oversized wing of the PCB that holds the PIM chips. Small clock and reset
modules were made to provide these functions to the host node when standing alone in a CPCI
cage. A chip reset line which enables operation from a reset vector was also wired to a pin set
aside for such on the memory socket, while the host node CPLD (Complex Programmable Logic
Device) was enhanced with register support of an 1/O line wired to that pin for reset control.
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The software provided another set of constraints. Our goal became to put the PowerPC host node
into a race with the PIM. RTEMS was used to manage this race on the host and at the same time
use task priorities to ensure full processing time was given to the host. The PIM Cornerturn
application was hand written and hand assembled, while the host Cornerturn was written in C
and automatically compiled and assembled with gcc and gas for the PowerPC with no
optimizations. The resultant assembly code was compared for similarity to the PIM code and was
within a few percent of the same cycle count.

The code and data were loaded through an emulator to both the PowerPC and the PIM memories.
The data size was 32k bytes, 8k 32-bit integer values. This data size was deliberately larger than
the PPC603e 16k byte data cache. Then under control of RTEMS via the PCI serial card the
demonstration was started. The host counted off 1000 iterations of Cornerturn. The PIM was let
run during that time. The PIM performed over 35,000 iterations yielding a 35x speedup. The
clock speed of the 603e was 166 MHz while the PIM was 133 MHz. The numbers illustrate both
the large penalty for cache miss behavior on the host (~13 bus cycles @ 66MHz for 205ns) and
the large benefit of very low-latency (~3 cycles @ 133MHz for 23ns) access to main memory for
the PIM processor.

9.9 Stressmark-on-Chip Verification

Continuing forward, we realized that many parts of the system required verification at once: the
chip, the system interface, the assembler, the compiler backend as well as the compiler. With a
small team and a plan for a second release of the chip with more features, we have adopted a test
strategy of using the DIS Stressmark suite with known inputs and outputs to give maximum
functional coverage with minimum effort. To that end, we have taken the C versions of
Cornerturn and Transitive Closure through the DIVA compiler and assembler. The kernel of the
stressmark is then extracted, setup code and the known input data is appended and the code is run
on the chip. The outputs are then checked against known good output from gcc builds and runs
on a Sparc workstation.

This method has turned up a handful of bugs in several different areas and is proving to be a
viable approach under the limited time constraints.

Recent verification work has shown successful execution of bi-directional message passing,
along with transitive closure, pointer, and 2-pim transitive with integral chip-to-chip
communications.

9.10 Future Work

The integration effort as a whole is still paying dividends. The HPCS project is using the current
system to measure DIVA’s performance on the StreamAdd benchmark and project expected
performance for the HPCS-sponsored Godiva system. The next chip turn incorporates a DDR
interface, mounted on full size DIMM memory cards plugged into a commodity Itanium-based
workstation as a test bench for the larger system concepts.
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PACT '02, to appear in Journal of Instruction-Level Parallelism.

11. Professional Personnel

11.1 Research Area Leaders:

Dr. John J. Granacki, Principal Investigator

Dr. Mary Hall, Co Principal Investigator

Dr. Jeffrey Draper, VLSI Team Leader

Dr. Jacqueline Chame, Simulation and Applications Team Leader
Mr. Jeffrey LaCoss, Emulator Team Leader

Mr. Tim Barrett, System Integration Team Leader

11.2 Doctoral students

Dr. Louis Luh, PhD, May 2000, Thesis Title: High-Speed CMOS Continuous-Time
Switched-Current Sigma-Delta Modulators

Dr. Herming Chiueh, PhD, Aug 2002, Thesis Title: A Thermal Management Design for
System-on-Chip Circuits and Advanced Computer Systems

Dr. Yuyu Chang, PhD. September 2002, Thesis Title: CMOS Giga-Hertz Band Filters
with Automatic Tuning Circuitry for Communication Applications

Joong-Seok Moon, PhD expected Aug 2003

Jaewook Shin (PIM-specific optimizations, integration of DIVA scalar GCC and
AltiVec-extended GCC, integration of DIVA compiler with MIT-SLP, DIVA
implementations of CornerTurn, Field and NAS CG, DIVA simulator library
implementation components), Phd expected 2004

Chun Chen (DIVA implementations of Neighborhood stressmark, Image Understanding
and Ray Tracing benchmarks, port of simulator to Condor)

Hang Shi (DIVA implementations of Transitive stressmark, Method of Moments
benchmark)

Ruoming Pang (DIVA implementations of Natural Join and OO7 benchmarks)

Chang Woo Kang, PhD TBD

Ihn Kim, PhD TBD

Taek-Jun Kwon, PhD TBD

Sumit Mediratta, PhD TBD

11.3 Masters students

Somphol Boonjing (Application Binary Interface for node compiler), MS December 2000
Sachit Chandra (VLSI) MS expected Aug 2003

Gokhan Daglikoca (VLSI)

Prashant Desai (design for assembler, backend compiler, integration with WideWord
instructions), MS December 2000

Rommel Dongre (GCC scalar backend implementation), MS December 2001
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Shyam Sethuram (DIVA simulator implementation components), MS May 2002
Vijay Srinivasan MS December 2003

11.4 Other Collaborators

e USCI/ISI: Mr. Dale Chase, Mr. Jeff Sondeen, Dr. Bill Athas, Dr. Jeff Koller, Dr. Craig
Steele, Mr. Mike Gorman, Dr. Apporv Srivastava, Ms. Diane Delute, Mr. Bert White, Dr.
Pedro Diniz. Mr. Pablo Moissett

e Caltech: Dr. Thomas Sterling, Mr. Daniel Savarese

e University of Notre Dame: Dr. Peter Kogge, Dr. Jay Brockman, Dr. Vincent Freeh, Mr.
Bedros Hanouik, Mr. Richard Murphy, Mr. Rich Kendall, Mr. Alexi Koundraiov, Ms.
Shannon Kuntz, Mr. Jason Zawodny, Mr. Arun Rodrigues, Mr. Edward Kang

e University of Delaware: Dr. Guang Gao, Dr. Kevin Theobald, Mr. Tom Geiger

e AlphaTech: Dr. Mark Luettgen, Dr. Bob Tenney

12. Results, Conclusions & Technology Transfer

The single most important result produced by the DIVA Project is a complete working system
that demonstrates the advantages of PIM technology used as “smart memories”. This is the
proof of concept that “smart memory” can help ameliorate the “memory wall” that limits the
performance of present day memory systems.

This achievement paves the way for further research on systems with heterogeneous memory
systems, that is, PIM and conventional DRAM used together; PIM-based memory hierarchies,
for example, PIM caches; studying and evaluating larger applications problems; namely, those
that cannot be run on a simulator or emulator and combining this technology in new ways or
incorporating it with other technology into new architectures.

Two follow-on research projects have already started to build on the DIVA technology
MONARCH under the DARPA-sponsored Polymorphous Computer Architecture Program and
Godiva under the High Productivity Computing System Program. Perhaps of even greater
significance these new projects are expanding the research and extending the technology in
partnership with large industrial partners. MONARCH is a joint project with the Raytheon
Corporation, a leading defense contractor and Mercury Computing, the largest supplier of
embedded computers to the military. Godiva is a joint project with Hewlett Packard, a major U.S.
computer vendor. Both of these projects represent significant IP transfer from DIVA but also
represent a high possibility for insertion of DIVA technology into real military and commercial
systems.

A “second turn” of the DIVA VLSI funded under the MONARCH Project will also incorporate
floating-point unit into the WideWord unit greatly enhancing DIVA’s applicability to a broader
class of scientific problems.

The DIVA team has briefed many of the research leaders of major U.S. companies like IBM,

Intel, Hewlett Packard and Sun, as well as several venture capitalists that have expressed an
interest in DIVA technology. We have also briefed the Deputy Under Secretary of Defense for
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Science and Technology, NSA’s Director of Computing and the DOE’s ASCI Program Manger.
We will continue to inform the decision makers about this technology.

The main issue with the acceptance of PIM and Embedded-DRAM technology is the cost-
performance, that is, does the added cost of combining DRAM on the same chip with the logic
processing warrant the added expense of manufacturing these die. This is a complex question
and depends on the specific application and also the semiconductor technology. At this time,
there is definitely a premium to be paid for the added performance offered by systems that use
PIM technology.

13. Inventions, or patent disclosures
No inventions were disclosed or patents submitted by the USC DIVA research team.
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Chapter 1 - DIVA Instruction Set Overview

Scalar Instruction As shown in Frgure 1, the DIVA scalar instruction uses a three-operand format to specify two 32-bit source registers and a 32-bit target reg-
Formats 1ster. For arithmetic/logical mstructions using this format, there 1s also a C bit to indicate whether the current instruction updates condition
codes. However, the C hit indicates signed/unsigned arthmetic for multiply/divide instructions, since these mstructions never update condi-

tion codes by definition. In hieu of a second source register, a 16-bit immediate value mav be specilied, as shown in Figure 2.

6 hits 5 bits 5 bits 5 bits 4 bits O bits

apcode ri rA rB | C |><| function

r Operations

Figure 1 Format R for Scalar Regi

=

O hits 5 bhits 5 bhits 16 bits

opeode rD rA immediate

Figure 2 Format I for Sealar Immediate Operations
The branch mstruction formats are shown in Figure 3. The branch target address may be PC-relative or calculated using a base register ORed
with an offset. In both formats, the offset s in units of words, or 4 bytes, since mnstructions must be on a 4-byvte boundary. Furthermore, the
L bit specifies linkage, that 15, whether a return instruction address should be saved in B3 1, referred to as a call instruction. Also, the CCC
field specifies one of eight branch conditions: alwavs, equal, not equal, less than, less than or equal, greater than, greater than or equal, or

overflow. See the branch and call instruction descriptions for details.

O bits 3 bits 5 bits 16 bits

| opeode | 0 | [,| cco | A offset |
6 bits 3 bits 21 bits

| opcode | 1 | [,| ceC | PC offset |

Figure 3 Format B for Branches
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WideWord Instruction
Formats

As shownon Figure 4, “WideWord Anthmetic/Logical Format,” WideWord istructions follow the general form of scalar instructions, Addi-
tional control information 1s included to manage the data fields of the WideWord. and to modify the execution of the instruction. F 5
shows the format for transfers within the WideWord register file and across the scalar and WideWord re

[

gure >

ster files.

6 hits 5 hits 5 bits 5 hits 2 bits 2 bits O hits
opcode wrl) wrA wrB ‘(l PP | Ww ‘ function
Figure 4 Format W for WideWord Arithmetic/Logical Operations
0 bits 3 bits 3 bits 3 bits 2 bits 2 bits 6 bits
opeode | rD | rA Lyp | T | PP | Ww | funetion

Figure 5 Format T for Wide-Word and Inter-Register File Transfers

The control helds are defined as follows:

W (widih)
The WH held sets the width of the WideWord operands to eight, sixteen. or thirty-two bits, which primarily affects the shift
operations and the configuration of the carrv chain for additions and subtractions. For the merge instruction, these bits specify
the condition on which the merge 1s based. The encoding of these bits 1s listed in the following table:

WW Value Operand Width Assembler Mnemonic
00 8 bits b
o1 16 bits h
10 32 bits W
11 Reserved NA

C (condition code enabie)

The € bit indicates whether condition codes will be updated as a result of the current instruction’s execution. However, the C
bit indicates signed/unsigned anthmetic for multiply, pack. and unpack instructions.
PP (participation)

The PP field interacts with condition codes to control whether a computation 1s performed on a given data field. The
participation field can specity that a data beld participate always, only 1f a condition local to its own data field 1s true, onlyv af
the data field 15 the lefimost field with a condition that 1s true, or only 1f the data field 15 the rightmost field with a condition that
15 true. The condition that 15 inspected for participation depends on the value of the PM (participation mode) register. Refer to
the architecture document for more details. The encoding of the PP bits 15 hsted in the following table:
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PP Value Participation Delinition Assembler Moemonic
o0 Always parhicipate a
01 Specified by local condition 0
10 Leftmost paricipation |
1 Rightimost participation f

T (type)
The Tt governs whether the current istruction operates on a vector or scalar. Depending on the function, rf or r4 may
specity a WideWord register. In this case, the T bit specifies whether the current transfer instruction refers to the WideWord
register as a whole vector or instead uses £y to index a sub-field of the WideWord register.

Lyn
WValue to be used as an index when a sub-field of a WideWord 15 involved in a transter. Depending on the function, this index
held may be an immediate or a scalar GPR specifier. Also. 1,p may be coupled with either rD) or rA depending on the
direction of the transter as specilied by the function.
Condition Codes The scalar conditton code register, CC, consists of 5 bits. The first three bits of CC are set by an algebraic comparison of the result to zero;
the other two bits have shghtly more pecubar semantics. The conditton codes have the €C bit labels and semantics as indicated below. Note
that LT GT. EQ), and CA condition codes are updated only 1 the current instruction has its condition code enable bit set. The OV condition

Condition Code | OC bit -Df:scripliull
L1 1] Ihis bat s setwhen the result 1s negative,
(&1} | This bit 1s set when the result 1s positive and non-zero.
EQ 2 This bit 15 set when the result 1s zero.
[\ 3 | This bit 1s set to indicate overtlow has occurred during execution of an add

or subtract instruction. This bit is not altered by any other instructions. In
practice. the OV bit is set if the carry out of bit 0 is not equal to the carry out
of bit | (assuming big Endian bit labeling).

CA 4 |In general, the carry bit (CA) 15 set to indicate that a carry out of bit 0
occurred during execution of an add or subtract instruction. This bit is not

altered by any other instructions.

code 15 updated for anv scalar add or subtract operation, regardless of the condition code enable bit setting, and 1= sticky; that 15, 1t 15 only
cleared when the condition code register 15 read.

The 32-bat LT, GT, EQ), OV, and CA registers of the WideWord datapath have analogous semantics to the corresponding condition code of the
scalar datapath. For instance, each bat of the WideWord LT register 1s set 1f the result of 1ts corresponding 8-bit datapath 1s negative. How-
ever, there are subtleties due to the configurability of the operand sizes. For example, 1t a WideWord instruction specifies that operands are
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to be treated as 532-bit values, the condition codes are grouped into eight groups of 4, where each bit of a group 15 updated with the same
value to reflect a condition for the group’s corresponding 32-bat result.

Similar to condition codes, the WideWord floating-point status register (FPSR - special-purpose register 15) may be updated to retlect excep-
tion conditions for floating-point operations. This register 15 a 32-bit register arranged in groups of 4 status conditions for each of the eight
32-bit Hoating-poimnt units i the WideWord datapath. The 4 status conditions are: divide by zero (D), invalid (1), mexact (1X), and unsup-
ported value (UV)L DZ, IV, and 1X are tvpical IEEE-734 Noating-point exceptions. Refer to the [EEE-754 standard for details. UV indicates
that either overflow or underflow occurred at some point during the program. All bits of FPSR are sticky: once set, they remain set until
FPSR 1s read via an mfspr instruction. The bit arrangement for FPSR 1s shown below.

|1::;x.|_>n-'r.'||[.\;n|t.x-'|.1[>x|‘[\-—'|||x1|1;\-'|| ss ||:v_?||\-'?||:<?m-'ﬂ
0 3l

FPSR Bit Arrangement
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Concise List

TABLL 1. DIVA Instruction Set

FUN DESCRIPTION FUNC DISCRIPTION FUNC DESCRIPTION
R EE] svstem Call MISFR WoveE 1o 5] PUIPOSE TEL |i13 Branch on scalar condimon
ICLI Instruction Cache Line lnvalidate MFsPR Move from special-purpose reg BAx Branch on all WideWord conditions
KFLE Keturn from Exception MTFR Move 1o protected reg BNy Branch on no WideWord condition

MEFFPR Move from protected reg CALLy  [Call on scalar condition
Scalar Instruciions MTATR Move to address translation reg CALLAx [Call on all WideWord conditions
ADD MFATR Move from address translation reg [CALLNx [Call on no WideWord condition
ADDE stended
ADDI Add immediate WideWord Instructions
ADDIC i immediate w/' condition codes  |WADD Add
SUB tract WADDE Add extended
SUBE Subtract extende WSUB Subtrac
SUBL Subtract unsigneg WSUBE Subiract extended Special WideWord Instructions
MIUL Mulbiply W5UBL Subfract ur WPRM  [Permute
SMIUULU Multiply unsigned WHMULES WEPRMI [Permute immediate
DY Dhivide WNMIULEX WHMRG [ Merge based on condition codes
DIV Dhivede unsigned WMULOS WPhS Fack vsaing signed anthmetie
AND And WMULOU [ Multiply odd w WPkl Pack vsing unsioned anthmetie
ANDH And imimediate WAND And WUPKH |Unpack high-order bytehallword
ANDHC And immediate wi condition codes [ WNOT Bilwise mversion WUPKL [Unpack low-order byte/halbword
MO Hitwase inversion WOR 45
OR Or WAOR AOr Transfer Instructions
ORI Or immediate WELL Shult left logical MYSW  [Mowve scalar to WW
ORIC Or immediate wi condiion codes WSLLI Shuti rcal immediate MYSWI | Mowve scalar to WW, indirect
ORIS Or immediate shafted WSRA Shuft right arithimeatic MVWS | Move WW 1o scalar
XOR Xor W5SRAI Shift right anthmenc immediate MYWSI [Move WW 1o scalar, indirect
NORI Nor immediate WESRL Shift r logcal MYWW [Move WW o WW
NORIC iate w condibon codes WSRLI Shuft night logmical immediate MVWWI | Move WW o WW, indirect
SLL aical WLD Load Reg from Mem
SLLI Shift left logical immediate WET Store Reg o Mem
SRA Shitt nght antl WFABS 1 pount absolute value
SRAI Shift night anthmetic immediate WFADD Al pont add Miscellaneous Instructions
KL Shutt right looeal WEDIV Floating-poant divide LKL Lock Load
=KLl Shilt night logical immediate WEMUL  [Floating-point multaply LORKS Lock Store
LIy Load Keg from Mem WENEG Fl point negate PROBE [Probe address to determine
=1 Store Kep o Mem WEsUB Fl pount subtract lecality
WETI Flos POl 10 nleger CORversion

ELQ) Encode lefimost one WITFE Ir Lo Floating-point conversion
CLOY Clear lefimost ong
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Alphabetical list of
instructions

TABLE 2. Preliminary Encoding of DIVA Instruction Set

Em‘mli ng
Instruction | Format & hits 5 hits 5 hits 5 hits 5 bits
AT R D rA B XXX
ADDC R D rA B IXXXX
ADDE R 011 D rA B XXX
ADDEC R 000011 D rA B IXXXX
ADDI I 100000 D rA immediate
ADDIC 1 10001 D rA mmediate
AND R D rA B XXX
ANDC R D rA B 101000
ANDI 1 [ O D rA
ANDIC 1 L D rA FITHTE ]
Bx B 111111 mCCC rA offsea
By B 111111 10CCC PC-relative offset
BAx B TT1100 mCCC rA | offsea
BAx B [RRRRLY 10CCC PC-relative offsat
BNx B 11111 mCCC rA | offsea
BNx B 1111al 10CCC PC-relative offsat
CALLx B 111111 MeCe rA | offsea
CALLx B 111111 Hneee PC-relative offset
CALLAx B 111100 meCC rA | offseat
CALLAY B [RRRRLY Hneee PC-relative offset
CALLNx B 111101 i laas rA | offseat
CALLNx B 1111o1 1ecc PC-relative offset
CLOY R D rA (0000 OXXX 001001
v R 00000 rA B DXXXX 100111
DIVU R DO000 rA B IXXXX 100111
ELO R 000011 D rA 00000 OXNXX 001000
ICLI 1 110011 DO000 rA offseat
LD 1 L 10000 D rA
LOKL 1 110110 D rA
LOKS I 110111 D rA
MFATR R (OO0 D atrA (0000
MIFR R D000 D prA 00000
MFSPR R Dooool rD spri (0000 000100
MTATR R DO0D00 atD rA 00000 000011
MTPR R (OO0 prD rA (0000 10001
MTSFR R Do0nol sprD rA (0000 000101
MUL R D000 rA rB 100110
MULT R D000 rA rB 100110

57



TABLE 2. Preliminary Encoding of DIVA Instruction Set

E[Il‘ulli[lj_'
Instruction | Formal 6 bits 5 biis 5 biis 5 bits 5 biis 6 bits
MVSW T 000100 wrlD rA Iy TPPWW 000100
MVSWI T 000100 wrlD A Ry DOOWW 100100
MVWS T 000100 D wrA Iy DOOWW
MYWSI T 000100 D wrA Ry DOOWW
MWW T 0oo100 wrD wrA Iy TPPWW
MYWWI T DOOT00 wrD wrA Ry I PPWW
NOT 1 ( 11 D A 00000 DXXXX
NOTC R D rA 00000 IXXXX
OR R D rA rB OXXXX
ORC R D A B IXXXX 107100
ORI | D i immediate
ORIC | D A immediate
ORIS | D rA immediate
PROBE I D rA
RFE R KXNNX KXNXX KNXXX 111111
SLL R D A B 00000
SLLC R D A B 0
SLLI R D ri shift_amount 0aoono
SLLIC R D rA st 0aoonn
SRA R D rA B 00101
SRAC R D A rB ]
SRAI R D i shift_amount 00011
SRAIC R D rA shift_amount 00011
SRL 12 D A rB
SRLC R D rA B
SRLI R D rA ft_amount 000011
SRLIC R 1D rA fi_amount 000011
ST | D i
SUB R D A B 100010
SUBC I D A B 100010
SUBE 1 D A B 1040011
SUBEC R D rA B 100011
SUBL R 000011 D rA B ]
SYS R DO0001 code
WADD W 000010 wrlD wrA wirB OPPWW
WADDC W 0ooo10 wrD wrA wrB | PPWW
WADDE W oooo1o wrD wrA wiB OPPWW
WADDEC W nooo10 wirD wrA wiB I PPWW
WAND W oooo1o wrD wrA wrB OPPWW
WANDC W 000010 wrlD wrA wirB I PPWW 101000
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TABLE 2. Preliminary Encoding of DIVA Instruction Set

Em‘utliu]:
Instruction | Format 6 hits 5 hits 5 bits 5 hits 5 bits 6 bits
WEARLS W 01110 wilD WA 00000 aPP10 000101
WFABSC W 01110 wilD WA Q0000 1PP1O )
WEFADD W oral wrlD wrA wrB aPP1O
WFADDC W 0111 wilD WA wrB 1PP1O
WEFDIY W 011101 wirD wrA wrB OPP1O 000111
WFDIVC W ool wil wrA wrB 1PP1O 000111
WEMUL W 011101 wirD wrA wrB OPP10 000110
WFMULC W o1l wrlD wrA wrB 1PP1O 000110
WEFNECG W 01110l wiD wrA 00000 apPP10 000100
WIFNEGC W o110l wrl wrA 00000 1PP1O 0
WESUB W 01110 wirlD wrA wrB aPP1O i
WFSUBC W o111 wrl wrA wrB 1PP1O i
wWITI W 01110 wilD WA Q0000 aPP1O o
WFITIC W o111ol wril wrA 00000 1PP1O 0oo010
WITEF W 01110 wilD WA Q0000 aPP1O 000011
WITFC W 01110 wilD WA Q0000 1PP1O 000011
WwLD | 110100 wiD A offset
WMRG W (00010 wilD WA wrB CPPWW o111
WHMULES W o000 wiD WEA wrB OPPWW 100110
WMULEU W Q00010 wil wrA wrB IPPWW 100110
WHMULOS W OO0 wirD wrA wrB OPPWW 100111
WMULOL W T wrlD wrA wrB IPPWW 100111
WNOT W 000010 wiD wrA 00000 OPPWW 10111
WNOTC W T wrlD WEA D000 IPPWW
WOR W oooo10 wiD wrA wiB OPPWW
WORC W T wrl wrA wrB IPPWW
WFEM W (OO0 O wirlD wrA wrB OPPO0
WPRMI W ool wrl WrA B OPPO0
WFPhS W (00010 wilD WA wrB DOOWW
WPKU W (OO0 O wirlD wrA wrB 100w W
wiLL W (00010 wilD WA wrB OPPWW
WALLC W (00010 wilD WA wrB IPPWW
WiLLI W (00010 wilD WA shift_amount OPPWW (
WHLLIC W ooonlo wiD WrA shift_amount IPPWW 000010
WiRA W o000 wiD WEA wrB OPPWW 000101
WSERAC W ooo1o wil wrA wrB IPPWW 000101
WiSRAL W Oo0oTo wrD wrA shift amount OPPWW 000111
WERAIC W ] wirD wrA shifl amount I PPWW 000111
WiRL W oooo10 wiD wrA wiB OPPWW )
WSRLC W T wrl wrA wrB IPPWW
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TABLE 2. Preliminary Encoding of DIVA Instruction Set

E[Il‘ulli[lj_'
Instruction | Formal 6 bits 5 biis 5 biis 5 bits 5 biis 6 hits
WiKLI W OO0 O wrD wrA shifi_amount OPPWW 000011
WERLIC W DOD010 wrD WrA shift_amount | PPWW 000011
wal | 110101 wiD rA offset
WSUB W D000 10 wrD WA wiB OPPWW 100010
wilBL W QOO0 wrD WrA wrB | PPWW 100010
WSUBE W ] wrD WA wiB OPPWW 100011
WiUBLC W OO0 O wrD wrA wrB I PPWW 100011
WEUBL W D000 O wrD WrA wrB IXXXX 100100
WUPKRH W D000 10 wrD WA 00000 COOWW aal1ol
WUPKL W Qo001 wrlD WA 00000 COOWW OO 100
WAOR W QOO0 wrD WA wiB OPPWW larolo
WXORC W ] wrD WA wiB | PPWW larolo
AOR R 0ooo11 D rA B OXXXX larolo
XORC R oooo11 D ri B IXXXX larolo
AORI | 1ololo D rA immediate
XORIC I 101011 D rA immediate
TABLE 3. Special-Purpose Registers

————— e

NAME | SPR Number DESCRIPTION

Lo 1] LI G ECY UN and UA Bats ol scalar processor

HI 1 most significant 32 bits of muluplhcation result, quotient of division

LA} 2 least significant 32 bits of multiplication result, remainder of division

LT ] 32-hit Less Than rem " WideWord Unit

el q 2-bnt Grreater Than register of WideWord Uit

EQ 10 32-but Equal register of WideWord Ut

A 11 ) ster o WideWord Uit

Oy 12 3 2<bit Overflow register of WideWord Unit

M 13 A 2=kt WideWord Mask register used in conditional execution

PM 14 S<bit WidaWord Participation Mode remster used i conditional execution

FPSR 15
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TABLE 4. Protected Registers

NAME PR Number DESCRIPTION
FayY [i] A2-Pil processor satus wiord
SSW 1 Storad value of PSW, used in exception handling
ETly F] La-bat environment identithier register
FADR 3 32-bat address of taulbing istrechon (stored value of PC)
SR, - SUR; 4.7 32 supervisor scratch registers
ESW g
EMR q
ESR 10
ERR 11 3 [
MADR 12 32t faulting memory address
TIMER 13 324t programmable delay tmer
RCL 14 Low order 32 bits of real-time clock
RCH 15 High order 32 bits of real-time clock
TABLE 5. Address Translation Registers
ATR
NAME Number DESCRIPTION
Ay - 3B 0-7 S2-bat Tocal anl base registers
2] P I 8-15 aZ-bit local ant limit re
GVE, - GVE, 16-19 s2-bat global segment virtual base registers
GLy - GLy 20-23 3Z-bat global s it limit registers
GPBy - GPBy 24-27 32-but global segment physical base registers
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Chapter 2 - Instruction Descriptions

Notation This chapter grves detatled individual mstruction desernptions. We use Big-Endian byte and bit labeling, meaning that bit'byte 015 the most
significant. Other conventions are listed i the table below

TABLE 6. Instruction Glossary

Syvmbol Meaning Svmbuol Meaning
4— p | Assignment MEM[EA] | Memory contents at effective address EA
Al B Bit string concatenation Oxvafwe | Hexadecimal value
o x replicated v imes Obvafue | Binary value
Xy, 2 Selection of bits v through z from x frx Floatmg-pomt register X
X x bitwise ANDed with 4 (rX) Contents of general-purpose register X
TV Y x bitwise ORed with v PC Program counter
i@y x bitwase exclusive ORed wath v IADR Instruction address
—x bitwise mversion of x

Note that the [ADR of an instruction 15 equivalent to the PC value while the instruction 1s in the fetch stage of the pipeline

Precedence The following table gives the rules of precedence and associativity for the pseudocode operators. All operators on the same line have equal
precedence, and all operators on a given line have higher precedence than those on the lines below them

TABLE 7. Precedence of Pseudocode Operators

Operator Asgspeiativily
x| n| left to right
Xy 2 lelt to right

o left to right
= right to lefi
X+ left to night
+. - lefi to right
left to right
= |=, <, <= > >= left to right
®, A leftto nght
left to right
— nong
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addx - Add

Scalar Unit

add rD, rA, rB
addc rD, rA, rB

(C
(C

0)
1)

000011 iy

rB

pe—(rA) HirB)
The sum (rA) + (rB) 1s placed nto rD.

Other registers altered

* 11 C =1, scalar condition code registers: LT, GT, EQ), CA

15 16

* Scalar condition code OV 1s set 1f the operation causes overflow

3
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addex - Add Extended

Scalar Uit

adde
addec

rD., rA, rB
rD, rA, rB

—
®
I

—
!
Il

0)
1)

| 000011 ‘ D

rB

[ >

100001

D —(rd)+(rB)+ CA

The sum (rA) + {rB), using the carry bit CA as the carry in, is placed into r[)

Uther registers altered

= [T C =1, scalar condition code registers: LT, GT, EQ), CA

15 16

= Scalar condition code OV 15 set 1f the operation causes overtlow

M2 22

25 26
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addi - Add Immediate

Scalar Umt

addi rD, rA, IMM

MM

| 130000 | D |

. L]

rD « (rd) + ((IMM,)

| IMM)

The swm (rA) + IMM {sign-extended to form a 32-bit valug) 15 placed into rD.

Other registers altered

15 16

* Scalar condition code OV 15 set if the operation causes overflow

65



addic - Add Immediate Recording Condition Code

Scalar Umt

addic rD, rA, IMM

| [ OO0 | ri2 | ri

MM

0 36 1011 15 16

i

rD e (rd) + (IMM) " || IMM)

The sum (rAy - IMM (sign-extended to form a 32-bit value) s placed into D,

Other registers altered

* Scalar condition code registers: LT, GT, EQ), CA
* Scalar condition code OV 15 set il the operation causes overflow
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andx - AND

Scalar Unit
and
andc

rD, rA, rB
rD., rA. rB

(C
(C

0)
1)

000011

B

rD e (rd) A (rB)

The contents of rA are ANDed with rB, and the result 1s placed into rD.

Other registers altered

* [{C =1, scalar condition code registers: LT, GT, EQ)
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andi - AND Immediate

Scalar Uit

andi rD, rA, IMM

| 101000 | D | rA MM

0 56 1011 15 16

1¢

rD e (rd) A (0 || IMM)
The contents of rA are ANDed with IMM {prepended with zeros to torm a 32-bit value), and the result s placed into D,
Other registers altered

* None
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andic - AND Immediate Recording Condition Codes

Scalar Uit

andic rD, rA, IMM

| 101001 | D | rA MM

0 56 1011 15 16

1¢

rD < (rd) A (0 || IMM)
The contents of rA are ANDed with IMM {prepended with zeros to torm a 32-bit value), and the result s placed into D,
Other registers altered

* Scalar condition code registers: LT, GT, EQ)
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bx- Branch

bx rA, offset (register-relative format)
111111 [ O ri oltset
0 3 6 7 8 1011 15 16 3
bx offset (PC-relative format)
I11111 1]t CoC ollset
(0 5 6 7 8 1011 3

i scalar condition indicated by COC

if PC-relative format
PC «— IADR + ((offsety) || offset | 00)

else

14

PC « ((r4) ~ 0xFFFFFFFC) v ((affset,) || offset || 00)

This branch instruction 15 condittonal upon the scalar condition specitied by COC. For the register-relative format, the target address 1s
formed by ORing the offset with the contents of rA. For the PC-relative format, the target address 15 formed by adding the offset to the
instruction address. In both cases, the offset 1s considered to be a signed instruction count, so 1t 1s shified left two bits and sign-extended. Fur-
thermore, the least two significant bits ol the contents of tA are 1gnored in the register-relative format so that a proper instruction-aligned

address results. The next instruction 1s always executed (one delay slot)

Register-Relative PC-Relative
CCC Mnemonic Mnemonic
000 b rA, offset b oflset
001 beq rA, offset beq offset
010 bne rA, offset bne offset
011 blt rA, offset bt offset
100 ble rA, offset hle offset
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Register-Relative PC-Relative

CCC Munemonic Mupnemonic
101 bgt rA, offset bat offset
110 bge rA, offset bge offset
[11 bov rA, oflset bov offset

Other registers altered

* None

The ret instruction 15 a simplified mnemonic for b r31, 0
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bax- Branch on All

bax rA, offset (register-relative format)
[1rog o]o coc a offset
0 5 6 78 1011 15 16 3
bax offs (PC-relative format)
| 11100 | o] ccc | offset
0 5 6 7 8 1011 31

i condition indicated by CCC 15 true for all WideWord datapaths

it PC-relative format
PC « IADR + ((offsety) || offset || 00)

else

14

PC « ((rd) »n OxFFFFFFFC) v ((offsety) || offset || 00)

This conditional branch mstruction succeeds 1f the condition specified by CCC 15 true tor all WideWord datapaths. For the register-relative
format, the target address 1s formed by ORing the offset with the contents of rA. For the PC-relative format, the target address 15 formed by

adding the offset to the mstruction address. In both cases. the oflset 15 considered to be a signed instruction count, so it 1s shifted left two bits

and sign-extended. Furthermore, the least two significant bits of the contents of rA are 1gnored in the register-relative format so that a proper

instruction-aligned address results. The next mstruction 15 always executed {one delay slot)

Register-Relative PC-Relative
CCC Mnemonic Mnemonie
000 b rA, offset b offset
001 baeq rA, offset baeq oflset
010 bane rA, oftfset hane offset
011 balt rA, offset balt offset
1000 bale rA, offset bale otfset
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Register-Relative PC-Relative

CCC Mnemonic Mnemonic
101 bagt rA, olfset bagt offset
110 bage rA, offset bage oflset
111 haov rA, offset baov oftset

Other registers alterad

* MNone
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bnx- Branch on None

bnx rA, offset (register-relative format)

L1101 0p1 cco ri ollset
0 5 6 78 1011 15 16 3
bnx offset (PC-relative format)
| 111101 [1{o] coc | offset
0 5 6 7 8 10 11 31

i condition indicated by CCC s false for all WideWord datapaths

it PC-relative format
PC « IADR + ((offsety) | offset || 00)

clse

4

PC « ((rd) ~ 0XFFFFFFFC) v ((offset,) || affset || 00)

This condittonal branch imstruction succeeds 1t the condition specified by CUC 15 false for all WideWord datapaths. For the register-relative
format, the target address 1s formed by ORing the offset with the contents of rA. For the PC-relative format, the target address 1s formed by
adding the offset to the nstruction address. In both cases, the offset 15 considered to be a signed instruction count, so 1t 1s shifted left two bits

and sign-extended. Furthermore, the least two significant bits of the contents of rA are ignored in the register-relative format so that a proper

instruction-aligned address results. The next instruction 15 always executed (one delay slot)

Register-Relative PC-Relative

CCC Mnemonic Mnemonie
000 b rA, offset b oflset

001 bneq rA, ofiset bneg offset

010 bnne 1A, offset bnne olfset

011 bnlt rA | offset bnlt offset

100 bnle rA, ofiset bnle offset
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Register-Relative PC-Relative

CCC Mnemonic Mnemonic
101 bngt rA, offset bngt offset
110 bnge rA, ofiset bnge olfset
[11 bnov rA, offset bnov offset

Uther registers altered

* None
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callx- Call

callx rA, offset (register-relative format)
[11111 aft1 ceo r& offset
0 5 6 78 1011 15 16 3

callx offset (PC-relative format)

INRRRY! L1 ccC ollset

0 5 6 78 1011 3
i scalar condition indicated by COC
P3le—J4ADR+ 8

it PC-relative format

PC « IADR + ((offsety)’ || offset || 00)

1]

sC

14
I

PC « ((rd) ~ OxFFFFFFFC) v ((offsery) || offset || 00)

This call instruction 1s conditional upon the scalar condition specified by CCC. For the register-relative format, the target address 1s formed
by ORing the offset with the contents of rA. For the PC-relative format, the target address 15 formed by adding the oliset to the instruction
address, In both cases, the oflset 1s considered to be a signed instruction count, so it 1s shilted left two bits and sign-extended. Furthermore,
the least two significant bits of the contents of rA are 1gnored in the register-relative format so that a proper instruction-aligned address
esults. The next mstruction 15 always executed (one delay slot). The effective address of the mstruction followmg the delay slot 15 placed
nto r3l.

Register-Relative PC-Relative
CCC Munemonic Munemonic
000 call rA, offset call offset
001 calleq rA, offset calleq olfset
010 callne rA | offset callne offset
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Reoister-Relative PC-Relative
CCC Mnemonic Mnemonic
011 calllt rA, offset calllt oftset
100 callle rA, oflset callle offset
101 callgt rA, offset callgt oftset
110 callge rA, offset callge offset
[11 callov rA, offset callov offset

Other registers altered

* None
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callax- Call on All

callax rA, offset (register-relative format)
L1100 afl cco rd ollfset
0 5 6 78 1011 15 16
callax offset (PC-relative format)
| oo ]| cce | offset
0 5 6 78 1011

it condition indicated by CCC 15 true for all WideWord datapaths

3l e JADR+ 8

if PC-relative format

PC e IADR + ((offsety)’ || offset || 00)

PC « ((rd) »n OxFFFFFFFC) v ((affset;)

This condittonal call instruction succeeds 1f the condition specibied by CCC 15 true for all WideWord datapaths, For the register-relative for-
mat, the target address 15 formed by ORing the offset with the contents of rA. For the PC-relative format, the target address 15 formed by
adding the oflset to the nstruction address. In both cases, the offset 15 considered to be a signed instruction count, so 1t 18 shitted left two bits
and sign-extended. Furthermore, the least two significant bits of the contents of rA are ignored in the register-relative format so that a proper
ays executed (one delay slot). The effective address of the mstruction follow-

nstruction-ahgned address results. The next mstruction 15 alw
ing the delay slot s placed into r31.

Ul offset || 00)

Register-Relative PC-Relative
CCC Mnemonic Mnemonic
000 call rA, offset call offset
001 callaeq rA, offset callaeq offset
010 callane rA, offset callane offset
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CCC

Register-Relative
Mnemonic

PC-Relative
Munemonie

callalt rA, offset

callalt offset

1000

callale rA, offset

callale otfset

callagt rA, olfset

callagt offset

110

callage rA, offset

callage oflset

11

callaov rA, offset

callaov oflset

Other registers altered

None
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callnx- Call on None

callnx rA, offset (register-relative format)
L1110 oql (B r& ofiset
0 56 7% 1011 15 16 3
callnx offset (PC-relative format)
111101 11 CCC oflset
0 5 6 78 1011 3

i condition indicated by CCOC 15 false for all WideWord datapaths
3l —JADR+ 8
if PC-relative format
v y o Q9
PC e« IADR + ((offsety) || offset | 00)

else

PC « ((r4) A OXFFFFFFFC) v ((offsety) " || offset || 00)

This conditional call instruction succeeds 1f the condition specified by CCC 1s false for all WideWord datapaths. For the register-relative for-
mat, the target address 15 formed by ORing the oflset with the contents of rA. For the PC-relative format, the target address 1s formed by
adding the offset to the mstruction address. In both cases, the offset 1s considered to be a signed instruction count, so it 1s shifted left two bits
and sign-extended. Furthermore, the least two significant bits of the contents of rA are 1gnored in the register-relative format so that a proper
instruction-aligned address results. The next instruction 1s always executed (one delay slot). The effective address of the mstruction follow-

ing the delay slot s placed into r31.

Register-Relative PC-Relative
CCC Mnemonic Mnemonie
000 call rA, offset call offset
(01 callneq rA, offset callneq oflset
010 callnne rA, offset callnne oflset
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Register-Relative PC-Relative
CCC Mpemonic Mnemonie
011 callnlt rA oftset callnlt offset
100 callnle rA, otfset callnle olfset
101 callngt rA, offset callngt offset
110 callnge rA | offset callnge oftset
111 callnov rA, offset callnov offset

CUther registers altered

None
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clox - Clear Leftmost One

Scalar Unit

clo rD, rA (C=0)
cloc rD, rA (C=1)

000011 2 ri [ > 001001

0 56 10 11 15 16 20 2122 25 26 3
for1=31to 0
if {rA)
lf|'||l|lll:| —
rD e (rA) A (1™ 0| 131~ P)

The contents of rA are searched to find the lefimost bit that 15 a one. The resulting value of clearing this bit but retaining the other bits 1s then
stored in I

Other registers altered

* 1T =1, scalar condition code registers: LT, GT, EQ
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div - Divide

Scalar Unit

div rA, rB

000011 00000 ri B 0 100111

0 56 1011 15 16 20 2122 25 26 3

Hie— (rd) = (rB)
L e— (rd imod(##)

The contents of rA are divided by the contents of 1B, treating both operands as signed values, No condition codes are updated as a result of
this operation. When the operation completes, the quotient word 1s loaded nto special register HI, and the remaimder word 15 loaded into spe-
cial register LO). This operation requires 38 clock cyeles in the worst case and thus requires some amount of scheduling.

Uther registers altered

* None
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divu - Divide Urn

signed

Scalar Uit

divu rA, rB

000011 Q000 réi B | 100111

0 56 1011 15 16 20 2122 25 26 3

Hi— (rd) = {#i)
Lode— (rd imod( rE)

The contents of rA are divided by the contents of rB, treating both operands as unsigned values. No condition codes are updated as a result
of this operation. When the operation completes, the quotient word 1s loaded into special register HI, and the remaimnder word 15 loaded mto
special register LO. This operation requires 38 clock cycles in the worst case and thus requires some amount of scheduling.

Other registers altered

* None
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elo - Encode Leftmost One

Scalar Unmit

elo rD, rA

| 000011 | D A 00000 | 0 |>-<| 001000

o
-
oy
=
)
[ ]
[ B
-
3
=l
3
=
]

tmp « 0xFFFFFFFF
for1=231to0
i {rAj,;
imp e i
i e mp

The contents of rA are searched to find the leftmost bit that 15 a one. The index of this bit is then stored in rD. If no bit of the contents of A
is a ong, the value OxFFFFFFFF 15 stored in r[

Other registers altered

* MNone
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icli - Instruction Cache Line Invalidate

icli rA, offset

| 110011 | 00000 | A offset

. - 16 .
Fde—{rd1+1i IJ.ljll\‘-_'lfu i " affsei

The 16-bit olfset is sign-extended and added to the contents of rA to form the effective address EAL I the EA 15 contamed in the mstruction
cache, the cache line containing that address 15 invalidated. This instruction may be executed only in supervisor mode

Other registers altered

* Mone
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Id - Load General-Purpose Register

Scalar Uit

Id rD, rA, offset

| 110000 | rk | ri offset

EA « OxFFFEFFEC A ((rd) + ((offsety)" ||

affserl)

ride— MEM[EA]

The [6-bit offset 15 sign-extended and added to the contents of rA to form the effective address EAL The 32-bit word at the memory location
specified bv EA (1gnoring the least two significant bits to ensure a 32-it aligned address) 1s then loaded into 1D
Other registers altered

* MNone
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lokl - Lock Load

Scalar Uit

lokl rD, rA, offset

| offset

| 10110 | D

1011 15 16

. I .
Alirdl [laffsety) ||.-.-,'_.'\.'L',' 1

EA « 0xFFFFFFFC
ri0— MEM[EA]
LOCK « 1
The 16-bit offset 15 sign-extended and added to the contents of tA to form the effective address EAL The 32-bit word at the memory location
spectiied by EA (1znonng the least two significant bits to ensure a 32-bit alhigned address) 1s then loaded into rD. The hardware lock bt 15
also set and remains set until a loks mstruction 1s executed or an exception occurs
Other registers altered

* MNone
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loks - Lock Store

Scalar Umt

loks rD, rA, offset

| 110111 | rD | ri offset
10 11 15 16

]
o

EA e OXFFFFFFFC A ((rA) + ((offsety)"® | affser)
if (LOCK = 1)
MEM[EA] « r)
rD e LOCK™

LOCK+—0

The 16-bit offset 1s sign-extended and added to the contents of rA {o form the effective address EAL The 32-bit word contents of rI are con-
ditionally stored at the memory location specified by EA {1gnoring the least two significant bits to ensure a 32-bit aligned address). The
success or fallure of the store operation 15 indicated by the contents of rD after execution of the instruction. If an exception occurs between
the last lokl and this loks istruction, the store 1s imhibited from taking place and the loks fails. The operation of loks 1s undetined when the

address 15 different from the address used in the last loklL
Other registers altered:

* None
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mfatr - Move from Address Translation Register

Scalar Unit

mfatr rD, atrA

000000 o atrA OO0 i QOO0

0 56 1011 15 16 20 2122 25 26 3

rle— (atrd)

The contents of address translation register atrA are stored in rD. A List of the address translation registers and their encoding 15 found n
Table 5. This imstruction mayv be executed only 1 supervisor mode.

Other registers altered

* None
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mfpr - Move from Protected Register

Scalar Unit

mfpr rD, prA

| 000000 | ) pray 00000 | 0 |><| 000000

0 56 1011 15 16 20 2122 25 26 31

i e—inrdl

The contents of protected register prA are stored in rD. A list ol the protected registers and their encoding 15 found in Table 4. This instruc-
tion may be executed only in supervisor mode.

Other registers altered

* None
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mfspr - Move from Special-Purpose Register

Scalar Umit

mfspr rD, sprA

000001 rly spri 000 0 Q00100

0 56 1011 15 16 20 2122 25 26 3

rD — (sprd)
The contents of special-purpose register spri are stored m rD. A list of the special-purpose registers and their encoding 15 found in Table 3
Other registers altered

* None
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mtatr - Move to Address Translation Register

Scalar Uit

mtatr atrD, rA

DOOG00 atrDy ri G000 0 Q00011

0 36 1011 15 16 20 2122 25 26 3

atrld « (rd)

The contents of general-purpose register rA are stored i address translation register atrD. A hist of the address translation registers and their
encoding 15 found i Table 5. This instruction may be executed only 1n supervisor mode

Other registers altered

* None
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mtpr - Move to Protected Register

Scalar Unit

mtpr prD, rA

Q00000 prD rA CHO000 0 Q00001

L
-

1011 15 16 20 2122 25 26 3

pedd e—

The contents of general-purpose register rA are stored in protected register pri. A list of the protected registers and their encoding 1s found
in Table 4. This instruction may be executed only in supervisor mode

Uther registers altered

* MNone
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mtspr - Move to Special-Purpose Register

Scalar Uit

mtspr sprD, rA

OO0 ,,I':.r] b i T [ 000101

0 36 1011 15 16 20 2122 25 26 3

sprprld e— (rd )

The contents of general-purpose register rA are stored in special-purpose register sprl2. A List of the special-purpose registers and their
encodimg 1s found 1in Table 3.

Other registers altered

* None
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mul - Multiply

Scalar Unit

mul rA, rB

000011 00000 rh B 0 100110

0 56 1011 15 16 20 2122 25 26 3

Tl e—{lpd)l=ef) 132 63

Hle— (lpdr={#i) Yo 31

The contents of rA are multiplied by the contents of B, treating both operands as signed values. No condition codes are updated as a result
of this operation. When the operation completes, the low-order word of the double result 15 loaded inte special register O, and the high-
order word 15 loaded into special register HI This operation requires 4 clock cyeles and thus requires some amount of scheduling.

Other registers altered

* MNone
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mulu - Multiply Unsigned

Scalar Unit

mulu rA, rB
000011 Q0000 rA B | 100110
0 56 1011 15 16 200 21 22 25 26 3
Fide—({pdi=irR) I.“E. 63

HI— {ird) = (#8) Jo 31

The contents of rA are multiphed by the contents of tB. treating both operands as unsigned values. No condition codes are updated as a resull
of this operation. When the operation completes, the low-order word of the double result is loaded into special register LO, and the high-
order word 15 loaded into special register HI This operation requires 4 ¢lock cyeles and thus requires some amount of scheduling,

Other registers altered

* None
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mvswx - Move from Scalar to WideWord

MVSWW wrD, rA, index (T=0)
mvswrpw wrD, rA (T=1)

DO0100 wrld i index T PPW'W 000100

0 56 1011 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size mask
00 8 ObIT111
01 16 ob11110
10 32 ab11100

hase «— (ndex A mask
(T =10)

W ase % 8, (base % 8) + (size - 1) V1 32

—size), 31

for 1= 010 {256 - s1ze) by s1ze

J — lrAdl 4
ii+isize— 17 rd (32—

size), 31

[ T=0. some portion or all of the contents ol tA are transferred to a subfield of wrD_ starting at the byte specified by the byte index. Depend-
g on the size of the data to be transterred, the least sigmficant bits of the index may be 1gnored to ensure proper alignment. [FT=1, the
contents of rA are replicated to form a 256-hit value which 1s transterred to wrD, subject to the participation mode specified by PP

Other registers altered

* None
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mvswi - Move from Scalar to WideWord Indirect

mvswiw wrD, rA, rB

O0WW 100100

00100 wrld rA B 0

3

56 1011 15 16 20 2122

Variable values in the following equations are as follows:

WW Value size mask
0o 8 ObIT111
1 16 Ob11110
10 32 Ob11100

base « (rB)yq 31~ mask

WrDy ase x 8, (base % 8+ (size — 1) ¥ L) (32 _gizen, 31

Some portion or all of the contents of rA are transterred to a sublield of wrl, starting at the byvte specified by the low-order bit contents ol
rB. Depending on the size of the data to be transterred, the least significant bits of the contents of rB mayv be ignored to ensure proper

alignment.
Other registers altered

* None
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mvws - Move from WideWord to Scalar

mvwsw rD, wrA, index

DOWW 000001

000100 > WA mdex [

20 2122

]

=l
[ )
(=l

56 [0 11 15 16

Variable values in the following equations are as follows:

WW Value size mask
[Il1] 8 ObIT111
01 16 ObI11110
10 32 Ob11100

base « index ~ mask

g wr — LAl
P33 gizey, 31 WEA  hase <%, (hase % 8) + (size — 1)

if (size =32

T [_l.]l—_f.'.'r'l
Py (32 —gize -1y Y

A subfield of the contents of wrA starting at the byte specified by the byte index are transferred to rD. Depending on the size of the data to

be transferred, the least sigmificant bits of the index may be 1gnored to ensure proper ahgnment. For data sizes less than 32 hits, the ligh-

order bits of rD are cleared.

Other registers altered

* MNone
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mvwsi - Move from WideWord to Scalar Indirect

mMmvwsiw rD, wrA, rB

Q00100 2 WA B 1] O0WW 100001

[0 11 15 16 20 2122 25 26 3

Iy
(=

Variable values in the following equations are as follows:

WW Value size mask
00 8 Ob11111
o1 & ObI1110
L] iz 011100

base « (rl )y 3y A mask

s
LS WA lp e g, (hase = B+ (size — 1)

(32 —size), 31
™ 2 = 2F
it (s12¢ 1= 532)
S
Al —xize)
53]

) . L= 0
P (32 —size - 1)

A subfield of the contents of wrA starting at the byte specified by the low-order bits of the contents of 13 are transterred to 1. Depending
on the size of the data to be transterred, the least significant bits of the contents of rB mav be 1gnored to ensure proper alignment. For data
sizes less than 32 bits, the high-order bits of rI are cleared

Other registers altered

* None
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mvwwx - Move from WideWord to WideWord

mvwwp wrD, wrA (T=0)
mvwwrpw wrD, wrA, index (T=1)

000100 wrD WTA index T PEWW OUO000

0 56 1o 11 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size mask
il 8 Ob1L11]
01 16 ob11110
10 32 Ob11100

base « index ~ mask
it (T =10)

wrlle— (wrd)
else

for1 = 0to (256 - size) by size
— (wrd)

-
.y
WFLY 4 (size-1)

bhase %8, (hase < 8) +(size - 1}

[T T=0, the entire 256-hit contents of wrA are transferred to wrD, subject to the participation mode specified by PP 11 T=1, the subfield of
wrA starting at the byte specilied by the byte index and of the size indicated by the WW bits 15 repheated to form a 256-bit value which 1s
transterred to wrD, subject to the participation mode specified by PP Depending on the size of the data to be transterred. the least sigmificant
bits of the index may be ignored to ensure proper alignment.

Other registers altered

* MNone
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mvwwir - Move from WideWord to WideWord Indirect Replicating

mvwwirpw wrD, wrA, rB

B | PPWW 100000

OO0 00 wrld WA

] 56 1011 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size mask
0a 8 Ob11111
L & ObI11110
10 il Ob11100

base e~ (rBlyq 3y~ mask
for1 =010 (256 - size) by si1ze
e F v A
e i+ (size-1) e I|"rr.~|'x B, (hase ©8) +isize - 1)
The subfield of wrA starting at the byte specified by the low-order bits of the contents of vB and of the size indicated by the WW bits 15 rep-
licated to form a 256-bit value which 1s transferred to wrD, subject to the participation mode specified by PP Depending on the size of the

data to be transterred, the least significant bits of the contents of B may be 1gnored to ensure proper alignment
Other registers altered

* None
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notx - NOT

Scalar Unit

not rD, rA

notc rD, rA

| 000011 |

rl}

[ =]

101110

P ——lrd)

The bitwise inversion ol the contents of tA 15 placed into rD.

Uther registers altered

* I1'C =1, scalar condition code registers: LT, GT, EQ

20 2122

25 26
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orx - OR

Scalar Unit

or rD, rA, rB

ore

rD, rA, rB

(C
(C

0)
1)

00011

i}

B

O

rl) e« (rd) v (rB)

wn

15 16

The contents of rA are ORed with rB, and the result 1s placed into rD.

Other registers altered

« IIC

I, scalar condition code registers: LT, GT, E0)

20 2122

3
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ori - OR Immediate

Scalar Umt

ori rD, rA, IMM

| 101100 | D | FA MM

0 56 (VRN 15 16

) - 16
rD e (A v (0 || IV
The contents of rA are ORed with IMM {prepended with zeros to form a 32-bit value), and the result 1s placed into D,
Other registers altered

* None
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oric - OR Immediate Recording Condition Codes

Scalar Unit

oric rD, rA, IMM

101101 | D | A MM

0 56 1011 15 16

y G
rD e (rd) v (0|

| IMA )
The contents of rA are ORed with IMM (prepended with zeros to form a 32-bit value), and the result 1s placed mnto DD,
Other registers altered

* Scalar condition code registers: LT, GT, EQ)
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oris - OR Immediate Shifted

Scalar Umt

oris rD, rA, IMM

| 101110 | D | rA IMM

0 56 1011 15 16

. 16
rD <« (rd) v (IMM] 0°7)
The contents of rA are ORed with IMM {appended with zeros to form a 32-bit value), and the result 1s placed into 1D
Other registers altered

* None
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probe - Probe Address

Scalar Unit

probe rD, rA, offset

| [10010 | D | rA offset

FAd e {rd)+1{i -J..:'."\L'.fu | = || affvel)
i EA s locally mapped

il «— OxFFFFFFFF
clsg

3 e— O OO000000

The To-bat offset 1s sign-extended and added to the contents of rA to form the effective address EAL The elfective address 15 then forwarded
to the address translation hardware to determine it the address 15 a vahd local address. The success or fallure of the operation 15 indicated by
the contents of rD) afier execution of the instruction.

Other registers altered

* MNone
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rfe - Return from Exception

rfe

000000 e 11

0 5 6 10 11 15 16 20 21 25 26 3

PC—(FADR)

PSW «— (S5I)

The program counter, PC. 15 loaded with the contents of the protected register FADR. Similarly, the PSW is loaded with the contents of S5W,
The next instruction 1s always executed (one delay slot).

Other registers altered

* None
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sllx - Shift Left Logical

Scalar Unit

sll rD, rA. rB (C=10)
sllc rD, rA,rB (C=1)

| 000011 | D | A | B | C |><| 000000

: e
u:—lll_nl:l.,_l, 11

rl e (A Je 11 ” ':ll\-

The contents of rA are shifted left by the number of bits specified by the low order five bits contained as contents of tB, serting zeros mnto
the low order bits of the result. The result 15 placed into .

Other registers altered

* 1 C =1, scalar condition code registers: LT, GT, E0)
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sllix - Shift Left Logical Immediate

Scalar Unit

slli rD, rA, shift amount (C=10)
sllic rD, rA, shift amount (C=1)

| 000011 | rl} ‘ ri | shilt amount |L' |><| 000010

0 56 1011 15 16 20 2122 25 26 31

v« shift amount

I e— {rd Je 31 || I:I'f

The contents of rA are shifted left by sfifi amonns bits, inserting zeros into the low-order bits of the result. The result 1s placed into 1D
Other registers altered

* |[I'C =1, scalar condition code registers: LT, GT, E0Q)
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srax - Shift Right Arithmetic

Scalar Unit

sra rD, rA, rB (C
srac rD, rA, rB (C

0)
1)

000011 i ri B O 000101

0 56 1011 15 16 20 2122 25 26 3

[ IE'.'_ 11

- & i
e ({rAd )y " [ (31-5)

The contents of A are shitted right by the number of hits specified by the low order hive bits contamed as contents of 1B, sign-extending the
high-order bits of the result. The result 1s placed into rD.

CUther registers altered

* I C =1, scalar condition code registers: LT, GT, EQ)

114



sraix - Shift Right Arithmetic Immediate

Scalar Unit

srai rD, rA, shift amount (C=0)
sraic rD, rA, shift amount (C=1)

000011 iy rA shift amount | O 000111
i 36 [0 11 15 16 20 2122 25 26 3
v« shift amount
i — ({rd Jo I3 ” (rAd Yo, 31-s)

The contents of rA are shitted right by s/t amownr bits, sign-extending the high-order bits of the result. The result 1s placed into rD.
Other registers altered

¢ 11 C =1, scalar condition code registers: LT, GT, EQ)
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srlx - Shift Right Logical

Scalar Umt

srl rD, rA, rB (C=10)
srlc rD, rA, rB (C=1)

000011 i rA B & 000001

0 56 111 15 16 20 2122 25 26 3

§ — I"--'IEII'-".‘ 31

rD e 0" || (rd)g, 315

The contents of tA are shifted right by the number of bits specified by the low order five bits contained as contents of 1B, inserting zeros into
the lngh-order bits of the result, The result 15 placed into 1D

Other registers altered

* [{C =1, scalar condition code registers: LT, GT, EQ)
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srlix - Shift Right Logical Immediate

Scalar Unit

srli rD, rA, shift amount (C=0)
srlic rD, rA, shift amount (C=1)

| 000011 | D ‘ rA | shift_amount |l\.|><_| 000011

0 56 1011 15 16 20 2122 25 26 31

v« shift amount

P e 0 || (rd o, (31-8)
The contents of tA are shitted right by &/t amonnd bits, inserting zeros into the high-order bits of the result. The result 1s placed into D,

Other registers altered

* [I'C =1, scalar condition code registers: LT, GT, E0Q)
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st - Store General-Purpose Register

Scalar Unit

st rD. rA, offset

| 110001 | rD | ra offset

EA « 0xFFFFFFEC A ((rA) + (offsety) || offsen)

MEM|EA] « rD)
The 16-bit offset 1s sign-extended and added to the contents of tA to form the effective address EA. The 32-bit word contents of [} are stored

at the memory location specilied by EA (1gnonng the least two significant bits to ensure a 32-bit ahgned address)
Other registers alterad

* None
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subx - Subtract

Scalar Unit

sub rD, rA,rB (C=0)
subc rD,rA,rB (C=1)

000011 T i

B

1] 36 [0 11 15 16

rD e—(rd)+ =lrB)+1

The contents of rB are subtracted from the contents of rA. and the result 15 placed into r[>

Other registers altered

* [fC =1, scalar condition code registers: LT, GT, EQ, CA
* Scalar condition code OV 1s set if the operation causes overllow

-
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subex - Subtract Extended

Scalar Unit

sube rD, rA,rB (C
subec rD., rA. rB (C

0)
1)

000011 rl) ri B [ 100011

0 56 1011 15 16 20 2122 25 26 3

rD e (rd)+=(rB)+CA
The contents of rB are subtracted from the contents of rA. using the carry bit CA as the carry in. and the result 15 placed into rD
Other registers aliered

* [{C =1, scalar condition code registers: LT, GT. EQ), CA
* Scalar condition code OV 15 set1f the operation causes overllow
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subu - Subtract

Scalar Unit

subu rD, rA, rB

000011 iy rA B | 100100

5
=]
&

16 20 2122

]
=l
13
-
3

rD —(rd)+=lrB) +1
The contents of 1B are subtracted from the contents of rA, and the result 15 placed into rD. This mstruction 15 identical to sub except that the
OV condition code 15 updated to reflect unsigned anthmetic.
Other registers altered
* Scalar condition code registers: LT, GT, EQ), CA
* Scalar condition code OV 15 set i the operabion causes overtlow

121



sys - System Call

A svstem call 1s made by setting bit 19 of the ESW (Exception Source Word) register whach in turn tng
% of the DIVA PIM Node Architecture manual for details regarding exceptions

code

Uther registers altered

None

6

25 26 3

ers an exception. Reler to Chapter
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waddx - WideWord Add

WideWord Unit
waddpw wrD, wrA, wrB (C =0)
waddepw  wrD, wrA, wrB (C =1)

000010 wrl) WA wrB3 C PPWW 100000

0 36 111 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size
g 8
LI 16
10 32

for 1= 010 {256 - s1ze) by s1ze
if PP bits and conditions are set accordingly

wirdd — (wrd ||,

FiwrB),

ii+isize-1) it isize =10 A tiEize =10

The WW field determines it the 256-bit contents of wrA and wrB are treated as 32 bytes, 16 half-words, or & words, The aggregate sums of
the ahgned data fields of wrA and wirB are placed into wrD., subject to participation

Other registers altered

« I1C =1, WideWord condition code registers; LT, GT. EQ. CA

* A WideWord OV condition code bit 15 set 1f the operation in its corresponding datapath causes overflow
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waddex - WideWord Add Extended
WideWord Unit

waddepw wrD, wrA, wrB (C =0)
waddecpw wrD, wrA, wrB (C=1)

pooo 10 wrD WIA wrld . PPWW 100001

0 56 1011 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size
00 8
o 16
10 32
for 1= 01to (256 - size) by si1ze

if PP bits and conditions are set accordingly

wirll — (wrd)

! Fi{wri) ("
it (size-1) VIR A 8

hi+(size-1) i i+ (size = 1) T B

The WW field determines 1if the 256-bit contents ol wrA and wrB are treated as 32 byies, 16 half-words, or 8 words, The aggregate sums of
the aligned data hields of wrA and wrl3 are placed into wrD, subject to participation. Each data field uses the associated bit of the WideWord
Carry register as a carry i for the operation.
Other registers altered

¢ 11 C =1, WideWord condition code registers: LT, GT, EQ, CA

* A WideWord OV conditton code bit 1s set 1if the operation in 1ts corresponding datapath causes overiflow
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wandx - WideWord AND

WideWord Unit

wandpw  wrD, wrA, wrB (C =0)
1)

wandcpw  wrD, wrA, wrB (C

| Qooato | wrl | WA | wrh | i | PPWW (RN ERAIA]

b 111 15 16 20 2122 25 26 31

LA

Variable values in the following equations are as follows:

WW Value size
0 8
01 &
10 32
for 1= 010 {256 - s1ze) by s1ze

if PP bits and conditions are set accordingly

A lwri)
i+ (size— 1) M AWED

ey Twrdd
WELY G4 (gize— 1y ¥ 1WHAL ii+(size—1)

The Z56-bit contents of wrA are ANDed with the 256-bit contents of wrB. and the result 15 placed into wrD, subject to participation. The
WW leld simply effects how participation applies and how condition codes are updated for this operation

Other registers altered

« If'C =1, WideWord condition code registers: LT, GT, EQ
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wlabsx - WideWord Floating-Point Absolute Value
WideWord Unit

wlabsp wrD, wrA (C=0)

wlabscp  wrD, wrA (C=1)

| 011101 | wiD | WwrA | oo ]| eeio 000101

0 56 1011 15 16 20 2122 25 26 31

for1=0to 224 by 32
it PP bits and conditions are set accordingly

wrD; ;45 ¢ |(wrd); ;45| (using floating-point arithmetic)

The 256-bit contents of wrA are treated as 8 single-precision floating-point operands. The aggregate absolute values of the floating-poimt
operands ol wrA are placed into wrD), subject to participation,

Other registers altered

* 11T =1 WideWord conditon code registers: LT, GT, EQ)
* PSR may also be updated 1t any floating-point exceptions oceur.
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wladdx - WideWord Floating-Point Add
WideWord Unit

wladdp wrD, wrA, wrB (C =0)
wladdcp  wrD, wrA, wrB (C=1)

011101 wrD WA wrB O PP10 000000

0 56 101l 15 16 20 2122

]
=
[ )
-
¥l

fori=0to 224 by 32
it PP bits and conditions are set accordingly
wrll; 545y (wred)

iie3n FlwrB) L5 (using tloating-point arithmetic)

The 256-bit contents of wrA and wrB are treated as 8 single-precision Hoating-point operands. The aggregate floating-point sums of the
aligned data fields of wrA and wrB are placed into wrD, subject to participation. Floating-point exceptions may be trigeered by this
operation.
Other registers altered:

* [T C =1, WideWord condition code registers: LT, GT, E0)

* FPSR may also be updated 1t any floating-point exceptions occur.
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widivx - WideWord Floating-Point Divide
WideWord Unit

widivp wrD, wrA, wrB (C =0)
widivep wrD, wrA, wrB (C =1)

011101 wrl) WA wrB . PP10O Oaol11

0 56 101l 15 16 20 2122

]
=
[ )
-
¥l

fori=0to 224 by 32
it PP bits and conditions are set accordingly
wrll; 545y (wred)

pie3n OBl g (using floating-point arithmetic)

The 256-bit contents of wrA and wrB are treated as § single-precision floating-point operands. The aggregate floating-point quotients of the
aligned data fields of wrA and wrB are placed into wrD, subject to participation. Floating-point exceptions may be trigeered by this
operation.
Other registers altered:

* [T C =1, WideWord condition code registers: LT, GT, E0)

* FPSR may also be updated 1t any floating-point exceptions occur.
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wimulx - WideWord Floating-Point Multiply
WideWord Unit

wimulp wrD, wrA, wrB (C =0)
1)

wimulcp  wrD, wrA, wrB (C

411101 wrD WIA wrl3 C PP10 000110

0 56 111 15 16 20 2122 25 26 3

for1= 010 224 by 32
if PP bits and conditions are set accordingly

el gy = Owed)y gy % Qe85 (using floating-point arithmetic)

The 256-bit contents of wrA and wrl3 are treated as 8 single-precision floating-point operands. The aggregate floating-point products of the
aligned data fields of wrA and wrB are placed into wrD, subject to participation, Floating-poimnt exceptions may be triggered by this
operation.
Other registers altered:

o 1 C =1, WideWord condition code registers: LT, GT. EQ

* FPSR may also be updated 1t any floating-point exceptions occur.
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winegx - WideWord Floating-Point Negate

WideWord Unit
winegp wrD, wrA (C=0)
winegep  wrD, wrA (C=1)

011101 wrl) WA Q0000 O PP10O Q00100

0 36 1011 15 16 20 2122 25 26 3

for1= 010 224 by 32
if PP bits and conditions are set accordingly

wrlly ;g = —(lwrd), ;4 ) (using floating-point arithmetic)

The 256-bit contents ol wrA are treated as 8 single-precision floating-point operands. The aggregate negations of the floating-point operands
of wrA are placed into wrD, subject to participation.

Uther registers altered

« [I'C =1, WideWord condition code registers: LT, GT, E0)

* FPSR may also be updated if any floating-point exceptions occur,
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wisubx - WideWord Floating-Point Subtract
WideWord Unit

wisubp wrD, wrA, wrB (C = 0)

wisubcp  wrD, wrA, wrB (C=1)

011101 wrD WA wrl3 C PP10 00001

0 56 1ol 15 16 20 2122 25 26 3

for1=0to 224 by 32
1f PP bits and conditions are set accordingly

wrld gy twedly o5y~ (el 4 5 (using floating-point anthmetic)

The 256-bit contents of wrA and wrB are treated as 8 single-precision floating-point operands. The aggregate floating-point differences of
the aligned data fields of wrA and wrB are placed mto wrD, subject to participation. Floating-poimnt exceptions may be triggered by this
operation.
Other registers altered:

* 1T =1, WideWord condition code registers: LT, GT, EQ)

* FPSRK may also be updated 1f any floating-point exceptions occur.
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witix - WideWord Floating-Point to Integer

WideWord Unit
witip wrD, wrA (C=0)
wfticp wrD, wrA (C=1)

011101 wrD WA 00000 . PPI0 000010

0 56 1011 15 16 20 2122

Fd

=
[ ]
(=

fori=010224 by 32
it PP bits and conditions are set accordingly

Wl gy et Oeed )y ) (assuming floating-point input operand)

The 256-bit contents of wrA are treated as 8 single-precision Hoating-point operands. Each single-precision floating-point operand 1s con-
verted to a 32-bit integer, and the aggregation of these 8 integers are placed into wrD, subject to participation. Floating-point exceptions may
be triggered by this operation.

Other registers altered:

* [T C =1, WideWord condition code registers: LT, GT, E0)
* FPSR may also be updated 1t any floating-point exceptions occur.
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witfx - WideWord Integer to Floating-Point

WideWord Unit
witfp wrD, wrA (C=0)
witfcp wrD, wrA (C=1)

011101 wrD WA Q0000 O PP10 000071

0 56 1011 15 16 20 2122

]

=
[ )
(=l

fori=010224 by 32
it PP bits and conditions are set accordingly

wrly oy e fpllwrd); ;o 5p) (assuming integer input operand)

The 256-bit contents of wrA are treated as eight 32-bit integer operands. Each integer operand 15 converted 1o a singe-precision floating-
point number. and the aggregation of these 8 single-precision floating-point numbers are placed into wrD, subject to participation. Floating-
point exceptions may be triggered by this operation.

Other registers altered:

* [T C =1, WideWord condition code registers: LT, GT, E0)
* FPSR may also be updated 1t any floating-point exceptions occur.
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wld - Load WideWord Register

WideWord Unit

wld wrD, rA, offset

| 110100 | wrl) | ri offset

EA « 0xFFFEFFED A ((rA) + ((affsetg)™ || affser))

wrl) «— MEM[EA]
The 16-bit offset 1s sign-extended and added to the contents of rA to form the effective address EAL The 256-bit value at the memory location
specified by EA (1gnoring the least five significant bits to ensure a 256-bit aligned address) 1s then loaded into wrD

Other registers altered

* MNone
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wmrgx - WideWord Merge

WideWord Unit
wmrgep wrD, wrA, wrB (C = 0)
wmrgeep  wrD, wrA, wrB (C=1)

| 000010 | wrD | - | wrB [c] prww 101111

0 56 10 11 15 16 20 2122 25 26

Variable values in the following equations are as follows:

WW Value cC Munemonic (¢)
o EQ £q
o LT It
10 T gt
1 M m
for1=0to 248 by §

i PP bits and conditions are set accordingly

FOC,,q = 1

2 g T s d
wird} L= lwrdl
Li+T 1i+7

el

el - i it -
WPLY 47 WrB )y i+ 9

Each bit of the WideWord condition code register specitied by the WW bits ol the instruction serves as a selector. [f the bit is 1, the corre-
sponding byte contents of wrA are placed into the corresponding bvte lane of wrD, subject to participation. 11 the bit 1s 0, the corresponding
byte contents of wrB are placed into the corresponding byte lane of wrD, subject to participation

Other registers altered

[t C =1, WideWord condition code registers: LT, GT, EQ
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wmules - WideWord Multiply Even Signed

WideWord Unit

wmulespw wrD, wrA, wrB

D000 wrD WrA wrB i

PPWW 100110

L
-

1011 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size
[13] 8
10 &
for 1= 010 {256 - 2 xsize ) by 2 x size

if PP bits and conditions are set accordingly

wrlh — lwrdl; < (wrll

3 3 ] M
i i+(2ngize—-1) A+(gize -1 Y, i+ (zize =17

Each even-numbered signed-integer byvte or half~word of wrA 1s multiphied by the corresponding signed-integer byte or half=word ol wrB,
where the WW field determunes if the 256-bit contents of wrA and wrB are treated as byvies or hall-words. The resulting signed halfword or
word products are placed, in the same order, into wrD), subject to participation. Mo condition codes are updated as a result of this operation
Uther registers altered

* MNone
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wmuleu - WideWord Multiply Even Unsigned

WideWord Unit

wmuleupw wrD, wrA, wrB

OO0OT0 wrD WA wrB | PPWW 100110

0 3 6 1011 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size
01 8
10 16

for 1= 010 {256 - 2 xsize ) by 2 size

if PP bits and conditions are set accordimgly

— (wrd), < (wrl)

-
e i, i+(size -1} ! it isize-1)

Hii+izxsize—1)

Fach even-numbered unsigned-integer byvie or halt=word of wrA 1s multiphed by the corresponding unsigned-integer byte or half-word of
wrB, where the WW lield determines it the 256-bit contents of wrA and wrB are treated as bytes or half-words. The resulting unsigned halt-
word or word products are placed, in the same order, into wrD, subject to participation. Mo condition codes are updated as a result of this
operation

Other registers altered

* MNone
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wmulos - WideWord Multiply Odd Signed

WideWord Unit

wmulospw wrD, wrA, wrB

00001 wrl) WA wrB ( PPWW 100111

0 50 1011 5 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size
131 2
10 6

for 1= 010 {256 - 2 xsize ) by 2 x size
if PP hits and conditions are set accordimgly

i (wrdl < (wri)
WPLY G4 2 xgize 135 W FA); 4 size i+ (2 % size— 1) WFOL 4 pize f4+(2%size— 1Y

Fach odd-numbered signed-integer byte or hali=word of wrA 15 multiphed by the corresponding signed-integer byte or half-word of wrB,
where the WW field determines if the 256-bit contents of wrA and wrB are treated as byvtes or hall-words. The resulting signed halfword or
word products are placed, 1n the same order, into wrl), subject to participation. No condition codes are updated as a result of this operation
Other registers altered

* None
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wmulou - WideWord Multiply Odd Unsigned

WideWord Unit

wmuloupw wrD, wrA, wrB

000010 wrD WA wrB | PPWW 100111

L
-

[0 11 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size
[13] 8
10 6

for 1= 010 {256 - 2 xsize ) by 2 x size

if PP bits and conditions are set accordingly

D {wrdl < (wri)
WFLY G4 (2 xgize - 1) 5 (Wrd)iy size i+ (2 % size—1 WFB L4 gize i+ (2% size-1)

Each odd-numbered unsigned-integer byte or half=word of wrA 1s multiplied by the corresponding unsigned-integer byte or half-word of

wrB, where the WW lield determines af the 256-bit contents of wrA and wrB are treated as bvtes or half-words, The resulting unsigned half-
word or word products are placed, in the same order, into wrD. subject to participation. Mo condition codes are updated as a result of this
operation

Other registers altered

* MNone
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wnotx - WideWord NOT

WideWord Unit
wnotpw  wrD, wrA (C=0)
wnotepw  wrD, wrA (C=1)

| Qoo 0 | wrld ‘ W | IGO0 | O | PPWW 101110

0 56 1011 15 16 20 2122 25 26 31

Variable values in the following equations are as follows:

WW Value size
0a 8
[13] 16
10 32
for 1 =0 to {256 - size) by size

if PP bits and conditions are set accordingly

) — el
i+ (zize -1 —lwrd

Litisize—1)

The 256-bit contents of wrA are bitwise inverted, and the result 1s placed into wrD, subject to participation. The WW field simply effects
how participation applies and how condition codes are updated for this operation.

Other registers altered

« IFC =1, WideWord conditton code registers: LT, GT, EQ)
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worx - WideWord OR

WideWord Unit
worpw wrD, wrA, wrB (C =0)
worcpw wrD, wrA, wrB (C=1)

| 000010 | wrl) ‘ WrA | wrB | C | PPWW 1OT100

0 56 1011 15 16 20 21322 25 26 31

Variable values in the following equations are as tollows:

WW Value size
0a 8
[13] 16
10 32
for 1= 0to {256 - s1ze) by size

it PP bits and conditions are set accordingly

Syl T vl
wri — (wrd), wrid,

i, i+(size-1) it (size -1 i+ (xize-1)

The 256-bit contents of wrA are ORed with the 256-bit contents of wrB, and the result 15 placed into wrD), subject to participation. The WW
field simply effects how participation applies and how condition codes are updated for this operation.

Other registers altered

* I1C =1, WideWord condition code registers: LT, GT, EQ)
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wpksx - WideWord Pack Signed

WideWord Unit

wpksw wrD, wrA, wrB

ao1110

wrb

‘ \|-\ r] :I

36 111

Variable values in the following equations are as follows:

WW Value size min max
01 16 T SO

10 32 15 15
2" 271

010 (128 - (size/2) ) by (size/2)

for
Vwrdd . = mi
it (wrd i%3, (i %2) +sizg -1 = MO
i )
WELY G4 (gizps2y— 1 5 N
alea 1§ .
else 1 (wrd);wa rimy +sipp - | = MAX
aqel ) p
WFLY i 4 (sizes2) -1 5 TAX
clse
[ — (wrd) . : -
(F %2+ (size /20, (1 %2) +size - 1

wirilk .
i, i+ (5 2 -1

ixD, (i %) +sizg— 1 = TUO

i Cwerd

WP ag 4§ 128 4§ + (sizes2) — | € T

alea 1§ o [—
else 15 (wrB ) a riny + sige — | = MAX

WL 2% 4 128 + = (sizes2) — 1 & TN

clse
— (writ

I
wret A | " P %
128+, 128 + 7§ + (size/2) - 1 (P22 + (simes2), (i %2)+5ime— 1
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Let the source vector be the concatenation of the contents of wrA followed by wrB. Each signed integer halt-word or word, as specified by
the WW bits, of the source vector 1s converted to a signed integer byvte or half-word, respectively. I the value of the source element 15 outside
the bounds that can be represented n the width of the result element, the result saturates to the mimimum or maximum value appropriately.
The aggregate result 1s placed into wrD. Note that participation 15 not supported tor this instruction.

Uther registers altered:

* None
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wpkux - WideWord Pack Unsigned

WideWord Umit
wpkuw wrD, wrA, wrB

0a0a 10 wrlD) WA wrB3 | DOWW 001110

0 56 [0 11 15 16 20 2122 26 27 3

Variable values in the following equations are as follows:

WW Value size max
01 16 L)
10 iz 3 16 |

for1=0to (128 - (size/2) } by (size/2)

it (wrd Vs 3, (i%2) +gize — 1 = MaxX

T e
WFLY i+ (sizes2)— 1 & AX

.
wrid . — lwrAdl \ n
e i+ (=izes2) -1 " "I'[|><1]+(SI.'.L‘:2|.(|X1]+5:|A¢-]

i (wrs lixa, (=2 +size— 1 > T0RAX

WL 28 40 128 + 1+ (sizes2y - 1 £ MAX
else
WP g+, 128+ + (size/ 21— 1 e lwrs I[J X 2) + (sizg/2), (1% 2) +s5iac— 1
et the source vector be the concatenation of the contents of wrA followed by wrB. Each unsigned integer halt-word or word, as specified
by the WW bits, of the source vector 1s converted to an unsigned integer byvie or half=word, respectively. [f the value of the source element 15
areater than the maximum value that can be represented n the width of the result element, the result saturates to the maximum value. The
aggregate result 15 placed mto wrD). Note that participation 1s not supported for this mstruction.
Other registers altered:

* MNone
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wprmx - WideWord Permute

WideWord Unat

wprmp wrD, wrA, wrB

000010 wrld Wi wrb {0 PPOC Q01000

for 1= 010 248 by 8

o I.I - 3 - -
s (wrB)i g 547

if PP bits and conditions are set accordingly
wird :',. - L 1

i+ B, (sxB)+7T

The contents of wrA are the source vector for this permutation operation. Bits 3 to 7 of each byte element of the contents of wrB are used to
select a byte element from the source vector for each byte element of the result. The result 15 placed into wrD, subject to participation

Other registers altered

* None
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wprmix - WideWord Permute Indirect

WideWord Unit

wprmip

wrD, wrA, rB

0O0010 wrld wrh B

PPOG

001001

56 1011 15 16 20

The tollowing lookup table i1s used for selecting a permutation vector:

index vector

=00 00001 02030405060 708090 ADBOCODOEOFION 12131415161 718191 AIBICIDIE]IF
0x01 0x0102030405060708090 A0BOCODOEOFI01 112131415161 718191 A1BICIDIEIFOOD
0x02 Ox02030405060708090A0BOCODOEOFIOITI2131415161 TIRISIAIBICIDIETIFO0O]
003 x030405060708090A0B0CODIEOF IO 112131415161 TISIS1IAIBICIDIEIFOO0102
Ox04 0405060 TORO90ADBOCODOEOF IO 12131415161 TIRISIAIBICIDIEIFOO010203
0x05 Ox05060T0R0S0AOBOCODOEOFIOTT 12131415161 TIRIS1IAIBICIDIEIFOO01020304
0x06 Ox060T0R00ADBOCODOEOF IO 12131415161 TIRISIAIBICIDIEIFOO01020304035
0x07 Ox070R090ADBOCODOEOF IO 12131415161 TIRI91AIBICIDIEIFOO0 10203040306
Ox08 Ox0B090ADBOCODOEOFIONTI 2131415161 TIRISIAIBICIDIEIFOO0 1020304050607
0x09 0x090AOBOCODOEOF 10111213 1415161718191 A1BICI DIEIFOBO102030405060T08
Ox0A Ox0AOBOCODOEOF1OTTI213 141516171819 1AIBICIDIEIFOO010203 040506070809
0B Ox0BOCODOEOFIO111213 1415161 TI8191AIBICIDIEIFI00102030405060708090A
0x0C Ox0CODOEOFLOTT12131415161 718191 AIBICIDIEIFO001 02030405060 T0R090A0B
0x0D Ox0DOEOFIOIT12131415161 718191 AIBICIDIEIFO00102030405060708090A0B0C
Ox0E OxOEOFIOT1T12131415161718191A1B1CIDIEIFO0010203 0405060708090 A0BOCOD
0x0F OxOF 10111213 1415161718191 AIBICIDIEIFO001 02030405060708090A0B0CODUE
0x10 Ox101112131415161 71191 ATB1ICIDIEIFO0010203 0405060708090 A0B0CODOEDF
Oox11 OxIT121314151617TIR191AIBICIDIEIFOOO 102030405060 708090 ADBOCODMEIF 10
0x12 012131415101 712191 AIBICIDIEIFO001 02030405060 708090 A0B0OCODOEOF 101 ]
0x13 Ox131415161 718191 AIBICIDIEIFO00102030405060708090A0B0CODOEOFIO1T12
Ox14 Ox 1415161 TIRI9IAIBICIDIEIFO00102030405060708090A0B0CODOEOF 10111213

-d

LA

[ ]
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index

vector

[ b OxIS161TIEI91AIBICIDIEIFOM0] 02030405060708090A0B0CODOEOF 1011121314
oxle U161 TIRI9TAIBICIDIETF0 0203040506070 090 A0B0CODOEOF 101112131415
0x17 OxITIBI9TAIBICIDIE RO 02030405060 708090A0B0CODOEOFI0111213141516
Ox18 018191 AIBICIDIEIFO001 02030405060 708090A0B0CODOEOFIOTT121314151617
0x19 O 191 AIBICIDIEIFNKO 02030405060 T0R0S0AOBOCODOEOF IOIT12131415161718
OxlA Okl AIBICIDIEIFOOO 102030405060 708090 A0BOCODOEOFIOTI1Z131415101 71819
ox1B O IBICIDIEIFO0010Z030405060708090A0BRCODOEIF 1OTT1Z13 1415161 TIEI91A
0x1C O ICTDIEIFO001 02030405060 TOROSOAOBICODOEOFIONNIZIZ 1415161 TIRI91IAIB
Ol O IDIETFO00102030403060708090A0BOCIDOEOF 1011213141516 7I8191AIBIC
Ox1E Ox | ENFO00 102030405060 T0R090AOBOCODOIEOF IO 1213 1415161 TIRISIAIBICID
OxIF O I FODO102030403060T0R090ATBOCODOEIFIOT1T12131415161 718191 AIBICIDIE
0x20 Ox00020406080A0COE1 012141618 TATCIEOIO30507090B0ODOF 1 LI3ISITISIBIDIF
0x21 Ox010003020504070605080BOAODOCOFOETTIOI3 1215141716191 8IBIAIDICIFIE
0x22 0x03020100070605040B0OA0S0R0FIENDOC I3 121110171615 141BIAISIRIFIEIDIC
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%24 OxOFOEODOCOBOAOSOROTOG0S0403020100IFIEIDICIBIAISIBITIGIS1413121110
0x23 OxIFIEIDICIBIAI9IRITI&I 51413121 1ID0FIEODOCOBOADS0R0T06050403020100
0x26 Ox0002010304060507080A0S0BOCOEODOFIOIZITIZI4161517IRBIAI9IBICIEIDIF
0x27 000401 05020603 07080C 0N DOACEOBOF 10141 1151216131 71R1ICISIDIAIEIBIF
0x28 0000801 09020A030B040C050D0G0EOTOFIOIRIII9I2IAISIBI41ICISIDIGIELTIF
29 0001 040508090C0D 1011141518191 C1D0203060TOAOBOEOF1 213161 TIAIBIEIF
0xZA 02030001 060704050A0B0R0G0EOFRCODI2I3 10T 161 TI41STAIBIRISIEIFICID
0x2B Ox 060704050203 000 10E0FOCODOADBORISI6ITI4ISIZIZIONTTEIFICIDIAIBIRLS
0x2C OxOECFOCODOACBOR0S060T040502030001 IEIFICIDIAIBIEI9161 7141512131011
0x2D OxIEIFICIDIAIBIRI9IAITI41S1Z213101 1OEOFOCODOAOBORO9060T040 502030001
0x2E Ox000104050203060708090CODOAOBOEOF 10T 114151213161 71R19ICIDIAIBIEIF
0x2F Ox0001080902030A0B04050C0D0OGOTOEOFIOTTIRISIZIZIAIBI4151CIDIGITIEIF
0x30 0001020308090 A0B 10111213 18191 AIBOL0S060TOCODOENF141516171CIDIELF
0x31 0x04050607000102030CODOEOFOR0S0AOBI41516ITIONIZIZICIDIEIFIEIZIAIB
%32 Ox0CODOEOFOR090 AOB0L05060 700010203 ICIDIEIFIEIRIAIBI415161 710111213
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0x34 Ox 0001 020308090 A0B0405060 TROCODOEOF IO L1213 18 191AIBI4151617ICIDIELF
0x35 Ox0001020310111213040506071415161TOR090A0B 1B 191 AIBOCODOEOFICIDIELF
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index vector
36 Ox1011121300010203 1415161 704050607181 91 A1BOROSOAOBICIDIEIFOCODOEOF
37 Ox0B090A0BOCODIEOFIIO 1020304050607 1819 1AIBICIDIEIFIOLI121314151617

ey — ety 4
permvector TU(IH!W:H(&2T|
fori=010 248 by 8
vﬁanWFUHHﬁ+3J+?
1if PP bits and conditions are set accordingly

— (wrd

=
wrid
VR e

I;xﬁi;xﬁl+?

The contents of wrA are the source vector for this permutation operation. The permutation vector 1s selected from a lookup table using the
least significant bits of the contents of rB as an index into the table. Bits 3 to 7 ol each byte element of the permutation vector are used to
select a byte element from the source vector for each byte element of the result. The result 1s placed into wrld, subject to participation.
Uther registers altered:

* None
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wslly - WideWord Shift Left Logical
WideWord Unit

wsllpw wrD, wrA, wrB (C

0)
1)

wsllepw wrD, wrA, wrB (C

00010 wrlD WA wrB & PPWW Q00000

0 56 1011 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size bits
00 2 3
o1 e 4
10 3z 5
for 1= 010 {256 - s1ze) by s1ze

§ — (wprf)
VRO g 4 size —bits, i +size—1

1 PP bits and conditions are set accordingly
| o

n
wrll — (wrd) .
Thi+(size-1) |".i..'+l.\.'.'|.'—|ll

The WW held determines 1 the 256-bit contents ol wrA and wrB3 are treated as 32 bytes, 16 half=words, or § words. The contents ol each
data field of wrA are shified lefi by the number of bits specified by the low order bits of the corresponding data field contained as contents
of wrB, inserting zeros into the low order bits of each data field of the result. The result 15 placed into wrD), subject to participation.

Other registers altered

« IIC =1, WideWord condition code registers: LT, GT, EQ)
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wsllix - WideWord Shift Left Logical Immediate
WideWord Umnit

wsllipw wrD, wrA, shift amount (C

0)
1)

wsllicpw  wrD, wrA, shift_ amount (C

000010 wrD WA shitft amount | C PPWW 000010

0 36 1011 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value siee hits
L1} 8 3
L 16 4
10 32 5

s e shift amounts _,,

For1 =010 {256 - s1ze) by s1ze
if PP bits and conditions are set accordingly

I 5
wrll — (wrd) 1]
i i+ (size-1) it s i+ (size-1) "

The WW held determines 1 the 256-bit contents of wrA are freated as 32 bytes, 16 half-words, or § words. The contents of each data hield
of wrA are shifted lett by the number of bits specitied by the appropriate bits of the shift amount, inserting zeros nto the low order bits of
each data field of the result. The result is placed into wrD, subject to participation

Other registers altered

* IFC =1, WideWord condition code registers: LT, GT. EQ)
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wsrax - WideWord Shift Right Arithmetic

WideWord Unit

wsrapw wrD, wrA, wrB (C=0)
wsracpw  wrD, wrA, wrB (C=1)
QOG0 wrld WA wrb . PPWW 000101
0 56 1011 15 16 20 2122 25 26 3

Variable values in the following equations are as [ollows:

WW Value size bits
LI} 8 ki
01 16 4
10 32 5
For 1= 010 (256 - size) by size

g — [wprl)
VPD )i ¢ size — bits, i +xize—1

if PP hits and conditions are set accordingly

n 5 )
wrlh e Cwrd V)V || Twrdd
hi+isize-1 » I'I'.' ” i+ gize—5-1

The WW field determines 1f the 256-bit contents of wrA and wrl3 are treated as 532 bytes, 16 halt-words, or 8 words. The contents ol each
data field of wrA are shified nght by the number of bits specitied by the low order bits of the corresponding data field contained as contents
of wrB, sign-extending the high-order bits of each data field of the result. The result 1s placed into wrD, subject to participation

Other registers altered

* I1C =1, WideWord condition code registers: LT, GT, EQ)
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wsraix - WideWord Shift Right Arithmetic Immediate
WideWord Umit

wsraipw  wrD, wrA, shift_ amount (C

0)
1)

wsraicpw  wrD, wrA, shift_ amount (C

| aooo o | wrl | WA | shift amount |'-.| PPWW aoonnl

0 36 111 15 16 20 2122 25 26

Variable values in the following equations are as follows:

WW Value siee bits
0w 8 3
" 16 4
10 32 5

s e shift_amounts _ g0 4
for 1= 010 (256 - size) by size

if PP bits and conditions are set accordingly

I § )
virld e (A )07 || Cwerd
WLy i+(zize-1) b I'l'.' ” WEAl i+ 5ize—5-1

The WW field determines if the 256-bit contents of wrA are treated as 32 bytes, 16 half-words, or 8 words. The contents of each data held
of wrA are shifted night by the number of bits specified by the appropriate bits of the shift amount, sign-extending the high-order bits of each
data field of the result. The result 1s placed into wrD, subject to participation

Other registers altered

« 1T =1, WideWord conditton code registers: LT, GT, ECQ)
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wsrly - WideWord Shift Right Logical
WideWord Unit

wsrlpw wrD, wrA, wrB (C

0)
1)

wsrlepw  wrD, wrA, wrB (C

| 000010 ‘ wrD ‘ WIA | wr3 | C | PPWW 000001

(¥

i 1011 15 16 20 2122 25 26

Variable values in the following equations are as follows:

WW Value size bits
L1} 8 3
(1] 16 4
10 32 5
for 1 =010 {256 - s1ze) by s1ze

. (wili
$EAWPO) ¢ gize —hiss, i+ size—1

it PP hits and conditions are set accordingly

wrll —0 || i)

Litisize—1) fi+xize—s-1

The WW feld determines if the 256-bit contents ol wrA and wrB3 are treated as 32 bytes, 16 half~words, or 8§ words. The contents of each
data field of wrA are shifted nght by the number of bits specitied by the low order bits of the corresponding data field contained as contents
of wrB, inserting zeros into the high-order bits of each data field of the result. The result is placed into wrD2, subject to participation

Uther registers altered

* 11T =1 WideWord condition code registers: LT, GT, EQ)
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wsrlix - WideWord Shift Right Logical Immediate

WideWord Uit
wsrlipw  wrD, wrA, shift_ amount (C =0)
wsrlicpw  wrD, wrA, shift amount (C=1)

| nooo1o ‘ wrl | WA | shift amount |L| PPWW oooll

0 56 1011 15 16 20 2122 25 26 31

Variable values in the following equations are as follows:

WW Value size bits
00 2 3
01 16 4
10 32 5

¢« shift amounts g, 4
for O to (256 - 2} b 2
orl P10 220 - 5122) DY S1Z2€

if PP bits and conditions are set accordingly

wri) — 0 || twrdd

i i+izize-13 i, i+xize—x-1

The WW field determines 1f the 256-bit contents of wrA are treated as 32 bytes, 16 halt-words, or 8 words. The contents of each data tield
of wrA are shitted right by the number of bits specified by the appropriate bits of the shift amount, inserting zeros into the high-order bits off
each data field of'the result. The result is placed into wrD, subject to participation

Other registers altered

* 1O =1, WideWord condition code registers: LT, GT, EQ)
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wst - Store WideWord Register

WideWord Unit

wst wrD, rA, offset

| 110101 | wrD | ri offset

EA « 0xFFFFFFED A ((r4) + ((offsety) " |

affser))

MEMI[EA] & wrD

The 16-bit oflset 15 sign-extended and added to the contents of rA to form the elfective address EA. The 256-hit contents of wrD are stored
at the memory location specified by EA (1gnoring the least five sigmficant bits to ensure a 256-bit ahigned address)

Other registers altered

* None
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wsubx - WideWord Subtract
WideWord Unat

wsubpw wrD, wrA, wrB (C =0)
wsubcpw  wrD, wrA, wrB (C=1)

000010 wrD WA wrB . PPWW 100010

0 56 [0 11 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size
LI 8
01 13
10 32

for1=010{256 - size) by si1ze
if PP bits and conditions are set accordingly

i (e F—={wiri) t
WELY Gt mize -1 S WWPAL Gy peize - 1) 7 TWWVPE ) g (ize - 1) 1

The WW field determines if the 256-bit contents of wrA and wrl3 are treated as 32 byvtes, 16 half-words, or 8 words. The aggregate difter-
ences of the aligned data fields of wrA and wrB are placed into wrD), subject to participation.
Other registers altered

o 1 C =1, WideWord condition code registers: LT, GT, EQ), TA

* A WideWord OV condition code bit 1s set 1f the operation in its corresponding datapath causes overflow
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wsubex - WideWord Subtract Extended
WideWord Unit

wsubepw  wrD, wrA, wrB (C =0)

wsubecpw wrD, wrA, wrB (C=1)

000010 wrD wiBB c| pPww 100011

0 56 1011 15 16 20 2122 25 26 3

Variable values in the tollowing equations are as follows:

WW Value size
00 B
01 16
1] 32
for 1= 010 (256 - size) by size

if PP bits and conditions are set accordingly

- fwrdl T A t .
A EAWEAL G size - 1) T MWL g (ize - g

i+ (size-1)

The WW field determines 1f the 2536-bit contents of wrA and wirB are treated as 32 bytes, 16 half=words, or § words, T gregate differ-
ences ol the aligned data fields of wrA and wrB are placed into wrD), subject to participation. Fach data field uses the associated bit of the

WideWord Carry register as a carry in for the operation
Other registers altered

« [1'C =1, WideWord condition code registers: LT, GT, EQ), CA
* A WideWord OV condition code bit1s set 1if the operation in 1ts corresponding datapath causes overflow
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wsubu - WideWord Subtract Unsigned

WideWord Unit

wsubupw  wrD, wrA, wrB

000010 wrD WA wrB | PPWW 100100

0 56 1011 15 16 20 2122 25 26 3

Variable values in the following equations are as follows:

WW Value size
00 8
01 &
10 32

for1=010(256 - size) by s1ze
if PP bits and conditions are set accordingly

i twrdl F—={wirR) t
WL i+ (size - 1) T WWPRL Gt gize - 1) T WIS G (size - 1) 1

The WW field determines 1f the 256-hit contents of wrA and wrB are treated as 32 bytes, 16 half-words, or 8 words, The aggregate differ-
ences of the ahgned data fields of wrA and wrB are placed into wrD, subject to participation. This mstruction i1s identical to wsub except that
the OV condition codes are updated to reflect unsigned arithmetic,
Other registers altered

* WideWord condition code registers: LT, GT, EQ, CA

* A WideWord OV condition code bit 15 set if the operation in 1ts corresponding datapath causes overflow
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wupkhx - WideWord Unpack High

WideWord Unit
wupkhsw wrD, wrA (C=0)
wupkhuw wrD, wrA (C=1)

Oooa10 wrD WA 00000 C O0WW i

L
-

1011 15 16 20 2122 26 27 3

Variable values in the following equations are as follows:

WW Value size
0a 8
01 16
for1=010 (256 - (2 xs1ize) ) by (2 xsize)
i C=1
wirll . — [:lsi,rc || twrd) .
P+ (2 X sy -1 WEESLA S (35 +size— 1
clsg
wirlh B — ({wprd) IEIM |||-,| A .
P+ (2 R osiee) - 1 » Rt 2 PN () +aize -]

The most sigmificant 128 bits of the contents of wrA are unpacked. or type promoted. For example, if WW=00 the 128-bit source vector 15
treated as 16 byvtes, where each byte 1s promoted to a 16-bit half=word to form a 256-bit result that 1s placed into wrD. The C bit indicates
whether sign extension or zero fill 15 used in the unpacking. Note that participation 1s not supported for this instruction,

Uther registers altered

* MNone
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wupklx - WideWord Unpack Low

WideWord Unit
wupklsw  wrD, wrA (C=10)
wupkluw  wrD, wrA (C=1)

| QOoaTo ‘ wrld ‘ WA | R0 | O | O0WW OO o0

0 36 1011 15 16 20 2122

Variable values in the following equations are as follows:

WW Value size
LI 8
01 G
fori1= 010 (256 - (2xsize) ) by (2 size)
if C=1
wirll . — [;lsj.rc ” (wird) . i
P+ (2 s — | CERTI2R (020, 128 + (§/2) + siee - ]
clse
Wl . — ({wprd) Ijjjc||||.-.-.|l . .
P+ (2 R s ) — 1 X IR+ (i4D) U IAE = (020 128+ (120 + siee — |

The least significant 128 bits of the contents of wrA are unpacked, or type promoted. For example, iof WW=00 the 128-bit source vector 15
treated as 16 bvtes, where each byte 15 promoted to a 16-bit half=word to form a 256-bit result that 15 placed into wrl. The C bit indicates
whether sign extension or zero fill 1s used in the unpacking. Note that participation is not supported for this instruction.

Uther registers altered

* None
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wxorx - WideWord Exclusive-OR
WideWord Umnit

WXOrpw wrD, wrA, wrB (C =0)

wxorcpw  wrD, wrA, wrB (C=1)

| DO00T0 | wrl | WA | wrb | o | PPWW 101010

0 36 111 15 16 20 2122 25 26 31

Variable values in the following equations are as follows:

WW Value size
00 8
01 16
10 32

for 1= 010 {256 - s1ze) by s1ze
if PP bits and conditions are set accordingly

g s ETT TR B (R
WELY i+ (size— 1) 5 WWEAL Gy isize — 1) TAWPD) G4 isize - 13

The 256-bit contents of wrA are exclusive-ORed with the 256-bit contents of wrB3, and the result 15 placed mto wrD, subject to participation.
The WW hield simply eflects how participation apphies and how condition codes are updated lor this operation

Other registers altered

« II'C =1, WideWord condition code registers: LT. GT, EQ
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xorx - Exclusive OR

Scalar Unit

Xor rD, rA, rB

Xore rD, rA, rB

(C
(C

0)
1)

000011 rl»

B

O

wn
-

rD <« (rd) @ (rB)

15 16

The contents of rA are exclusive-ORed with rB, and the result 1s placed into rl,

Other registers altered

* [1'C =1, scalar condition code registers: LT, GT, E0)

20 2122

3
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xori - Exclusive OR Immediate

Scalar Unit

Xori rD, rA, IMM

| 101010 | D | rA IMM

0 5 6 [0 11 15 16 31

P [, .
FD e (rA) @ (0 || IMM)
The contents of rA are exclusive-ORed with IMM (prepended with zeros to form a 32-bit value), and the result 15 placed mnto rD.
Other registers altered

* MNone
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xoric - Exclusive OR Immediate Recording Condition Codes

Scalar Uit

XOric rD, rA, IMM

| 101011 | D | (A MM

0 36 1011 15 16 31

o e 10 S
rD e (rd) ® (0 || IMM)
The contents of tA are exclusive-ORed with IMM { prepended with zeros to form a 32-bit value), and the result 1s placed into rl.
Other registers altered

¢ Scalar condition code registers: LT, GT, EQ)
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Motivation

DIVA System
Architecture

Chapter 1 - Introduction and Rationale

The inereasing gap between processor and memory speeds 15 a well-known problem i computer architecture, with peak processor perfor-
mance increasing at a rate of 30-60% per vear while memory access imes improve at merely 3-7T%. Recent VLSI technology trends offer a
promising solution to bridging the processor-memaory gap: embedded-DRAM tecimology integrates logic with high density memory in a pro-
cessing-in-memory (PIM) chip. Because PIM internal processors can be directly connected to the memory banks, the memory bandwidth 1s
dramatically inecreased (with hundreds of gigabit/second aggregate bandwidth available on a chip--up to 2 orders of magnitude over conven-
tional DRAM) Latency to on-chip logic 1s also reduced, down to as hittle as one half that of a conventional memory system, because internal
memory accesses avold the delavs associated with communicating off chip.

The Data IntensiVe Architecture {DIVA) Project 1s an exploration of the potential benefits of making direct use of the high data bandwidth
and low access latency available on memory devices. DIVA leverages embedded-DRAM technology to replace or augment the memory sys-
tem of a conventional workstation with “smart memones™ capable ol very large amounts of processing. System bandwidth limitations are
thus overcome in three ways: (1) tight coupling of a single PIM processor with an on-chip memaory bank: {2 distributing multiple processors
and memory banks per PIM chip; and. (3) utihzing a separate chip-to-chip interconnect, for direct communication between nodes on difter-
ent chips that bypasses the host svstem bus.

The DIVA system architecture 15 tocused on achieving the tollowing four goals: { 1) developing PIMs that can serve as the only memory
the system, assuming the dual roles of “smart memories™ and conventional memory: (2) supporting a wide range ol familiar programming
paradizgms, closely related to parallel computing: (3) targeting applications that are severely impacted by the processor-memory bottlenecks
in conventional systems: sparse-matrix and pointer-based appheations with irregular memory access patterns. and image and video apphica-
tions with large working sets: and, (4) developing a VLSI device to exploit memory and communications bandwidth in PIM-based systems
while making efficient use of on-chip resources for target applications.

In DIVA, the PIM chips serve as the memory to a conventional host processor. A DIVA system 1s comprised of multiple interconnected PIM
chips (on the order of 532 to 64 ). Un each of these PIM VLSI devices, there may be multiple processors and memory banks. Each PIM pro-
cessor has a specilic memory bank associated with 1t We refer to a single processor and 115 associated memory bank as a node,

This document describes the architecture of a single node i the DIVA system, presenting its key components in detail. This chapter provides
a framework for understanding the role ot a DIVA node by first describing the overall system architecture, as well as the architecture of the
PIM VLS device, tollowed by kev features of the DIVA system architecture. Subsequently, 1t deseribes individual components of the node
architecture, to be covered in much more detail in later chapters.

Acdrving principle of the DIVA svstem architecture 15 etlicient use of PIM technology while requiring a smooth migration path for software.
This principle demands integration of PIM features into conventional svstems as seamlessly as possible. As a result, DIVA chips are
designed to resemble commercial DRAMs. enabling PIM memory to be accessed by host software as ih1t were conventional memory. In Fig-
ure 1, we show a small set of PIMs connected to a single host processor through conventional memory control logic. Because of on-chip
memory accesses, this memory controller can not be a commercially avaitlable device: while standard DRAMs are “slave”™ memories man-
aged by the host, active PIMs mav have to signal a “not readv”™ condition while access to the memory array 15 arbitrated.

Parcels which spawn computation, gather results, synchronize activity, or simply access non-local data are transmitted through a separate
PIM-10-PIM interconnect to enable communication without intertering with host-memory tratfic. This interconnect must have low latency
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DIVA PIM Chip
Architecture

and high bandwidth and be amenable to the dense packing requirement of memory devices. Furthermore, it must be scalable to allow the
addition or removal ol devices from the system. For system sizes of the scale expected for DIVA (32 to 64 PIM chips), this combimation of
requirements tavors a one-dimensional network. The interconnection network of an earher embedded scalable svstem, the Package-Driven
Scalable Svstem (PDSS) [SteeleR7], 15 used as a model. The interconnect 15 implemented by PIM Routing Components (PIRCs) - one per
PIM chip. The PIRC inter-chup fabric 1s then a poimnt-to-point bidirectional ring using wormhole routing and the Red Rover routing algorithm
| Draper96| to effect deadlock-free. low-latency routing of fixed-sized packets. Future generations of DIVA systems will contain large num-
bers of PIM chips and will require a more complex network scheme.

T Huost
o P cor Me . Bu Memory
Processor rocessor Memory 5 [||I|1'|'r.Fll:.l‘.'

PIM .-\rl':\L .
r—--—-—=-=--=- - - == |
" F

Bos | +—— - = — -

Huost Interface PIM-PIM

System Bus Unit Interconnect

Figure 1: DIVA Sys cal Organization

Each DIVA PIM chip 1s a VLSI memory device augmented with general and special-purpose computing and networking/commumnication
hardware. A PIM may consist of multiple sodes, each of which are primanly compnsed of a tew megabyvies ol memory and a node proces-
S |

sor. Figure 2 shows a PIM with four nodes. The nodes on a chip share a single PIRC and a host interface. The PIRC 1s responsible for routing
parcels on and oft chip. The host interface supports conventional memory accesses from the host as well as parcels inihated by the host.

Figure 2 also shows two global interconnects that span the PIM chip for information flow between the nodes, the host interface, and the
PIRC. Each interconnect 15 distinguished by the tvpe of information it carries. The PIM memory bus 15 used for conventional memory
accesses from the host processor. The parcel interconnect allows parcels to fransit between the host interlace, the nodes, and the PiIRC.
Within the host interface. a parcel bufter (PBUF ) provides a buller that 1s memorv-mapped into the host processor’s address space, permit-
ting apphcation-level communication through parcels. Each PIM node also has a PBUF, memory-mapped into the node’s local address space
[see discussion m next section). Although the PIRC also contains parcel ports, we do not label them PBUFs, as they are not memory-
mapped.
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Overview of DIVA
PIM Node

|
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Memory
To Neighboring PIM
Processing
Logic -
PBUF | Memory Port || |-
. Parcel Nade|
PIM Routing
Component luterconnect PIM Memory Bus
{(PiRC)

[ PBUF | Memory Port

Host Interface

To Neighboring PIM t To Host System Memory Bus

Figure 2: DIVA PIM Chip Organization

The DIVA PIM node processor supports single-1ssue, in-order execubion, with 32-bit instructions and 32-bit addresses. There are two execu-
tion units, or datapaths: a scafar dafaparh performs sequential operations on 32-bit registers, and a wide dafapath performs fine-grain
parallel operations on 256-bit register. Both scalar and wide datapaths execute from a single istruction stream under the control of a single

S-stage prpeline. The instruction set has been designed so both datapaths can, tor the most part, use the same opcodes and condition codes,
senerating a large functional overlap. Each datapath has 1ts own independent register file, but special instructions permit direct transters
between register files without going through memory.

The combination of the execution control pipeling and scalar datapath mav be viewed as a conventional microprocessor and may be pro-
grammed as such. This capability 15 essential to the evolutionary software development approach. Users may, with very httle effort, exploit
the coarse-grain parallelism oftered by the PIM nodes by simply programming multiple nodes in a conventional sense. However, users may
also exploit hine-grain parallelism by using the WideWord datapath.

Although not supported in the imitial DIVA prototype, oating-point functionality will be provided in future systems as extensions to the
WideWord unit to operate on eight 32-bit datapaths. The floating-point support will be mentioned throughout this document, but as 1t 15 sub-

ject to change, will not be presented in sigmiticant detail.

In addition to the execution umits, each DIVA PIM node includes three other units. A mearory waed (M1 15 responsible for generating proper
control signals to the memory macro. Its functions mclude iitiating refresh cycles as needed and arbitrating between the host memory port
and the execution contrel unit for access to the memory macro; prionty of accesses goes to the host. Furthermore, 1t tracks and maintains an

open row 1n the DRAM macro to enable page-mode accesses as often as possible A small insirnction cache (10115 used to keep mstruction
accesses to the memory macro from interfering with data accesses as much as possible. Each node contains a memoryv-mapped location

called a parcel bufler (PBUF ) that serves as a port between the parcel interconnect and the node, permitting efhicient application-level parcel
sends and receives.
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Key Features of This section briefly highlights the most important features of the DIVA node architecture:
DIVA Node

® [igh bandwidth and low latency access to node memaory

The wide datapath permits memory accesses of 256 bits with a single load or store operation. Further, the latency on these
memory accesses 15 quite low. Two consecutive accesses to memory within the same 2k-bit row in the memory cell will be
in page mode, with a latency on the order of just a few node cveles. [f not on the same row In memaory, accesses are 1n ran-
dom mode, which 1s perhaps 3 times slower than a page mode access, but 15 stll roughly 3-4 times faster than the latency
that would be observed in a conventional system.

# Standard scalar mstructions augmented with wide AL and memory operations

In addition to the mgh-bandwidth memory operations described in the previous paragraph, the wide datapath enables
superword-level parallehism as available i multimedia extensions such as MMX and AluVec on wide words of 256 hits,
The functionahity of the wide datapath 15 distinguished from other multimedia and subword parallelism 15As in the fol-
lowing ways, which will be discussed in more detail later: DIVA supports selective execution ol instructions on sub-fields
with a WideWord, depending on the state of local and neighboning condition codes: it supports direct transfers to/from
other register files; and, the wide datapath 1s tightly coupled with the inter-chip communication.

# [nlegrated scalar and wide datapaths, using a single control papeline

The scalar and wide datapaths share a single control pipeline. avoiding complications in keeping two separate pipelines
synchronmized. Direct transfers to/from the register liles associated with each datapath facilitate efficient switching
between scalar and fine-grain parallel portions of the computation. The two instruction sets share most of the same
opcodes, and to further unity the nstruction sets, use the same condition codes.

Block Diagram and Figure 3 shows the major control and data connections within a node. Information flows into and out of the node via the pbut or the memory
Description of Node port. As shown i the figure. arbitration between external memory accesses by the host and node memory accesses 15 required. This arbutra-
tion adds an insignificant delay to the host memory access time when the PIM processor 1s not accessing memaory; there 1s hittle difference in
performance when the PIMs are simply used as conventional memory. If the PIM processor 1s accessing memory, the host memory access
time includes the additional latency of waiting for the PIM memory cycle to complete.

Components
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Figure 3: DIVA PIM Node Architecture

The execution pipeling 15 shared between the scalar and wide datapaths. It 1s a standard 5-stage pipeline, with the following stages: (1)
instruction fetch; (2) register decode: (3 ) execute; (4) memory; and, (5) write. There are three classes of pipeling hazards, which result inadle
cveles: (1) long instruction sequences, such as for multiphes and divides; (2) register operations, involving data dependences between nearby
instructions; and, (3) memory operations, which stall the pipeline due to multiple cycles latency to memory. The second class of hazards are
sometimes avorded with pipeling forwarding, Ciher hazards can only be avoided through caretul ordering of mstructions by the compiler.

The scalar datapath 1s for the most part a standard RISC architecture, augmented with a few DIVA-specific functions for coordinating with
the wide datapath. The wide datapath accesses the scalar registers for addressing operations, as well as for controlling sublield operations,

The WideWord datapath processes objects aggregated within a row of the local memory array by operating on 256 bits in a single processor
cvele. This fine-grain parallelism offers additonal opportunity for exploting the increased processor-memory bandwidth available in a PIM.
The WideWord umit can perform bit-level operations, such as simple pattern matching, or higher-order computations such as searches and
reduction operations.

The WideWord datapath has several features to distinguish it from a conventional SIMD architecture. First 1s the abulity to change ALU
operand width on a per-instruction basis, enabling 1t to treat a WideWord as a packed array of objects of eight, sixteen, or thirty-two bits in
size. This characteristic means the WideWord ALLT 15 more accurately represented as parallel ALUs, where the number o’ ALUs depends on
the operand size. Second, a permuration network enables applications to rapdly align and reorgamze wide register operands. Third. it sup-
ports selective execution ol instructions on sub-fields within a WideWord, depending on the state of local and neighboring condition codes.
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Memory Unit

Instruction Cache

Parcel Buffer

Other Node Features

Address Translation

Although similar designs support some type of conditional operation, the DIVA WideWord Unit provides a much richer functionalhity
through the ability to specify selective execution i almost every wide instruction and the use of global condition code information n selec-
tion decisions. Fourth, even Tor applhications where the WideWord ALLU operations are not applicable, the wide datapath can be used to
accelerate memory access time and communication.

The memory umt consists ol the DRAM macro as well as the memory controller to arbitrate between varous kinds of access requests to the
memory. The memory macro includes the features typical of a standard DIAM: mn addition, 1t supports a full address bus, rather than a row-
column multiplexed one. The memory controller arbitrates memory requests, which come from several sources: memory refresh, the host
interface, the memory stage of the node pipeline, and the node instruction cache. These sources are listed n the order in which they are
aranted priority.

A small instruction cache 15 included to avoid instruction accesses interfering with data requests, both to reduce the frequency of requests to
memory and to maximize the opportunity for laster page mode accesses for the data requests. The instruction cache 15 direct mapped, and the
size for the mitial implementation 15 4K bytes with 32byvte cache lines, Because 1t caches just instructions, which are not expected to be mod-
ihed during program execution, there 1s no write back facihiv or other mechamsms for keeping cache hines coherent with memory. To
support context switching, an invahidate instruction permits immvahidation of individual cache lines,

The basic mechanmism used in the DIVA svstem to support parcel sending/receiving from/to an application 1s a parcel buffer (or phugf). The
phuf has a virtual as well as a physical abstraction. To the application, the pbut locations appear as regular memory locations that are manip-
ulated through simple loads and stores. At a physical level, the pbut s a set of memorv-mapped registers. Each PIM node contains a pbuf
that serves as a port between the on-chip parcel imterconnect and the node (refer to Figure 2). Although the parcel bulier could be imple-
mented as registers within the PIM node processor, a memory-mapped mechanism for the parcel buifer allows a uniform implementation for
the node’s pbut as well as a host pbutf’ Hence, a pbul within the PIM chip host interface 1s memory-mapped into the host processor’s address
space to allow the host processor to communicate with PIM nodes via the parcel mechanism.

DIVA partitions the virtual address space of the host processor into three classifications: dumb, which represents standard pages visible only
to the host;, global, which 1s shared by host and PIM: and local. which the PIM node uses for internal computation and 1s visible to the host
only 1 supervisor mode. The local memory 15 further partioned into segments; global memory for a partcular PIM 15 also represented by
ong or more segments. To condense translation information, we use sepmeris, each of which 1s defined by segment registers contaiming a
physical base address and limit. The local memory region 1s partitioned into eight segments at fixed virtual bases, for kernel code, stack and
data, user code and data/stack, and for kernel and user communication butfers. A small number of global segment registers are also used;
since global segments must be able to map portions of a shared virtual address space much larger than the physical memory of an individual
node, global segments must be represented by both a virtual and physical base address register,

Remote addresses are translated via the concept of a home node, which 1s guaranteed to have the translation. Theretore, a node must main-
tain translation information for only eight local segments plus a small number of segments for 1ts portion of the global memaory, as well as for
any remote data for which 1t 1s the home node. The major advantages ol this approach are that translation may be accomplished ramdly, and
translation information on each PIM scales well.
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Fxceptions

Exceptions, arising from execution of node instructions, and interrupts, from other sources such as an internal timer or external interrupt sig-
nal, are handled by a common mechanism. The exception handhing scheme for DIVA has a modest hardware requirement, exporting much
of the complexity to soltware, (o mamntain a Hexible implementation platform. It provides an itegrated mechamsm for handling hardware
and software exception sources. Addittonally, 1t provides a flexible priority assignment scheme which minimizes the amount of time that
exception recognition 1s disabled. While the hardware design supports traditional stack-based exception handlers, we also outling a non-
recursive dispatching scheme which uses DIVA hardware features to allow preemption of lower-prionty exception handlers using a mecha-
m=m which should be easier to debug.
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Chapter 2 - Registers and Data Types

This chapter describes DINVA’s different registers and their usages, and how data 1s represented in these registers. The scalar and wide datap-
aths each have their own register file. Whether an mnstruction uses the scalar or wide datapath, arithmetic operations follow a S-register
format, with two sources and one destination. Transters between register files 15 accomplished with explicit move instructions. Data 1s trans-
ferred between memory and registers with explicit load and store instructions only. Memory operations involving scalar and wide registers
refer to memory locations aligned at 32-bit and 256-bit boundaries, respectively.

The general-purpose registers can be accessed in either user mode or supervisor mode. Some special-purpose registers can be accessed n
user mode, but all remaining special-purpose registers may be accessed only in supervisor mode. For the most part, the registers in the scalar
datapath follow standard RISC systems. The wide datapath, in contrast, has several novel tvpes of registers to facihiate selective execution
on specific subfields of the register. The condition codes have been extended on the wide datapath to maintain a result for each separate data
hield, and branch instructions have been added to the [SA to simultancously check the conditions on all data fields. Another novel feature of
the wide datapath 15 the abihty to select an individual subfield of the wide register, using erther an immediate or a scalar general-purpose reg-
1ster, and move the selected held 1in an explicit move instruction.

Bevond the standard supervisor-level registers required for interrupts, exceptions and protection, a few special-purpose registers in the sys-
tem support DIVA-specific activities, Segment registers are used to support address translation. Also, an environment identihier (EID)
identifies the currently active user program, for protection purposes, as well as to support iter-node communication.

Some additional registers on a DIVA PIM chip that are not part of a single node are included 1 the PIRC and host interface, but a discussion
of these 15 bevond the scope of this document.

The registers for a DIVA node are summarized in Table land graphically displaved in Figure 5. This section describes each type of register
in detail. In the classihication below, we first describe the general-purpose registers, both scalar and wide. then the special-purpose registers,
distinguishing between supervisor-level registers and user-level registers. Access privileges are described by the mode tield of the program
status word (PSW) register. This organization 1s also reflected in Table land Figure 5. In Table 1, the “type™ field describes the classification
of each register. Type scalar and Wide Wowd refer to the general-purpose registers, 57 indicates the user-level special-purpose registers, A7
refers to the address translation registers, and /7 refers to all other privileged registers.

This section describes the general-purpose scalar and wide registers that are accessible to user code.

General-Purpose Scalar Registers

There are 32 general-purpose scalar registers, each 32-bits wide, which we designate as RO-E31 1 Figure 5. This register file is used as the
source or destination for all imeger scalar instructions. In addition, scalar registers are used to provide addresses for memory accesses Lo sca-
lar and wide load/store instructions. Further, scalar general-purpose registers can be used to index sublields in a wide register during
transfers between register Niles using the MYSWI and MYWSI mstructions (see below ). Memory operations to load and store objects to
from a general-purpose scalar register are aligned at 32-bit boundaries. For convenience in performing arithmetic operations where the
immediate U 15 one of the operands, R s hardwired to hold the value 0.
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User-Level Special-
Purpose Registers

General-Purpose Wide Registers

There are 32 general-purpose wide regsters, each 256-bits wide, which we designate as WRO-WR31 mn Figure 5. This register hle 15 used as
the source or destination of all wide instructions. Wide instructions perform the same operation on 8-, 16-, or 32-bit subfields of the wide reg-
ister, as designated by the width (WW) field of the mstruction (Future implementations may also support 64-bit subfields for wide douhle-
precision floating point capabihty. ) The mask register and participation mode register (described below ) can optionally be used to designate
which subfields will participate 1n an instruction, if the participation (PP) field of the instruction 1s set.

Wide registers are loaded from/stored to memory using addresses from the general-purpose scalar registers. Memory operations to load/store
objects to/from a general-purpose wide register are aligned at 256-bit boundaries. Individual fields of wide word registers can also be set or
read using MVSW, MVWS, MVSWI and MYVWSI instructions that use a register or immediate index to specify the data held to be accessed.
In addition to arnthmetic and transter operations, wide registers can be updated through the permutation mstructions WPREM and WPRMI,
which reorgamize the data hields of the source register into a destination register. The former mstruction uses a third wide register to specily
how the data fields will be rearranged. and the latter performs a lookup into a table of hardcoded permutation patterns.

A large number of special-purpose registers are directly or indirectly accessible to the user program, each described in this section.

® A single condition register for scalar condition codes, and a set of five condition registers for wide condition codes
® Scratch registers tor scalar integer multiply and divide
® A participation mode register and mask register to support selective execution on the wide ALU

In addition to being read/written indirectly by other ALU operations, the DIVA node architecture permits user-level access to any special-
purpose register through explicit moves to standard registers, using the MTSPR and MFSPR mstructions.

Scalar Condition Register

The scalar condition code register, CC in Figure 5, consists of 5 bits. The {irst three bits of CC are set by an algebraic comparison of the result
tor zero, the other two bits have shghtly more peculiar semantics. The condition codes have the CC bit labels and semantics as indicated in the
table below, Note that LT, GT, EQ), and CA condition codes are updated only 1f the current instruction has its condition code enable bit set.
The OV condition code 15 updated for anv scalar add or subtract operation, regardless of the condition code enable bit setting, and 1s sticky;

175



that 15, 1115 only cleared when the condition code register 1s read. Thew are accessed in conditional branch and call statements. Further, hike
any user-level special-purpose registers, thev can be explicitly read and written with the MFSPR and MTSPR instructions, respectively.

Condition Code | CC bit flc?urripliull
L1 0 This bit 1s set when the result 1s negative.
Crl [ This bit 1s set when the result 1s positive and non-zero.
EQ 2 This bit 15 set when the result 1s zero.
OV A This bit 1s set to indicate overflow has occurred during execution of an add

or subtract instruction. This bit 1s not altered by any other instructions. In
practice, the OV bit 1s set if the carry out of bit 0 1s not equal to the carry out
ol bit 1 (assuming big Endian bit labeling).

CA 4 |In gencral, the carry bit {CA] 1s set to indicate that a carry out of bit 0
oceurred during execution of an add or subtract instruction. This bit is not
aliered by any other msiructions.

Figure 4: Scalar Condition Code Register

Wide Condition Registers

While the scalar codes are consolidated into a single condinon register, the CC deseribed above, each type of WideWord condition code 15
allocated an entire register so the results ol parallel operations on objects as small as bvtes mav be recorded. Each one ol these condition reg-
isters 15 32-hits wide. Thus, wide condition registers are designated as LT, GT, EQ, OV, and CA. For an example of how the wide condition
registers are used, a bit of the WideWord LT register 15 set if the result of 1ts corresponding 8-bit datapath 1s negative. However, there are sub-
tleties due to the contigurabihitv of the operand sizes. For example, it a WideWord instruction specifies that operands are to be treated as 32-
bit values, the condition codes are grouped nto eight groups of 4, where each bit ot a group 1s updated with the same value to reflect a con-
dition for the group’s corresponding 32-bit result. Like the scalar CC register, the LT, GT, EQ), and CA wide condition registers are only set
by mnstructions that have therr C field enabled. The OV register 1s a sticky register that 1s updated on all WideWord add and subtract opera-
tions; bits of this registered are cleared only when the register 15 read using an mispr instruction.

The wide condition codes are accessed by the branch instructions BAx and BNx. which represent Branch-On-All and Branch-On-None con-
dittons tor the appropriate wide condition register represented by x.

WideWord Floating-Point Status Reoister

Similar to condition codes, the WideWord floating-point status register (FPSR - special-purpose register 15) may be updated to rellect excep-
tion condrtions for floating-poimnt operations. This register 1s a 32-bit register arranged in group ol 4 status condittons tor each of the e1ght 32-
bit Noating-point umits in the WideWord datapath. The 4 status conditions are: divide by zero (DZ), invalid (IV ), mexact (IX ), and unsup-
ported value (UUV) DZ] IV, and 1X are tvpical IEEE-754 floating-point exceptions, Refer to the IEEE-754 standard for details, UV indicates
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Supervisor-Level Address
Translation Registers

that erther overllow or underflow occurred at some point during the program. All bits of FPSR are sticky: once set, they remain set until
FPSR 1s read via an mfspr instruction. The bit arrangement for FPSR 1s shown below.

|D.'f_[}‘ ]\f"['ll [X[Jllf\-’[i[})’_ I | vl |[Xl |1IV || S S |I]}’.?| [\-"?|1X7|[ I '\?1
a 31
FPSR Bit Arrangement

Scerateh registers for integer multiplies and divides

Two registers, designated HI and LO in Figure 5, are automatically set as the result of' a scalar integzer multiply or divide. HI holds the most
stgnificant 32 bits of a multipheation result or the remainder of a division. L) has the least sigmificant 32 bits of a muluplication result or the
quotient of a division.

Participation Mode Register

The Participation Mode (PM) register 1s a 5-bit register that describes the conditions for selective execution of a wide instruction that has its
PP field set. The conditions correspond to the four condition codes or the mask register M (as will be discussed in Chapter 5). The PM reg-
1ster 15 read/wrnitten using the MFSPR and MTSPR instructions. [t 15 also updated automatically to select M for participation when the
mask register M 1s updated.

Mask Register

The mask register 15 a 32-bit register used in participation, which we refer to as M in Figure 5. [f the PP field of a wide instruction 1s set, and
the W bat of the PM register 1s set, then the imstruction 1s conditionally executed on each data field that has its corresponding bit in the M reg-
1ster set. Like the WideWord condition codes, 1f the wadth of each field 15 larger than 8 bits, multiple bits in the M register will be set
corresponding to a single data field (2 tor 16-bit widths, 4 for 32-bit widths ). Update of the M register automatically causes the M bit of the
PM register to be set.

Mtotal of 28 32-bit registers related to local and global segments are used 1o perform translation of virtual addresses to physical addresses by
the node processor. A detailed description of how these registers are used in the address translation process can be found in Chapter 10, The
registers are set by supervisor-level software using MTPR mstructions, usually as a result of a context switch or a change in the size or loca-
tion of current global segments. Thev are read either by MEFPR instructions, or more commonly, directly by address translation hardware.

A set of 16 registers support local segments, referning to addresses local to the PIM node that are maccessible to host user code or other PIMs
nodes. There are eight local segments, with two registers representing each segment. The Local Segment Base registers (SB0-5B7) hold the
physical base address of each local segment. The Local Segment Limit registers (5SLO-5L7) hold the maximum offset from the base, for
address bounds checking, as well as some additional bits to support access protection.

A set of 12 registers support global segments, referring to addresses that may be shared between host and PIM. There are four global seg-
ments, and each 1s supported by three separate registers. Global segments must be able to map portions of a shared virtual address space
much larger than the physical memory of an individual node. For this reason, global segments have both Global Segment Physical Base reg-
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Other Supervisor-Level
Registers

1sters (GPBO-GPB3), similar to local segments, as well as Global Segment Virtual Base Registers (GVBO-GVE3). Usages of the Global
Segment Limit registers { GLO-GL3) are analogous to the SLO-5L7 registers for local segments.

A number of other supervisor-level registers are included to support the PIM run-time kernel activities. These can be classified imto the fol-
lowing categories:

Scratch registers

The program counter

The processor status word

The environment identifier

Timer registers, including two to hold current svstem clock and one used as a countdown timer

Registers to support interrupts and exceptions, a total of seven

While in some cases these registers are updated as a result of a hardware event or upon execution of some other instruction, all of the regis-
ters can be read from/written to general-purpose registers by the supervisor-level instructions MFPR and MTPR. There are two exceptions
to this. The Program Counter 1s set only by hardware. and cannot be accessed directly, even by supervisor-level code: for this reason. 1t 15 not
given a register class in Table 1. Also, the Exception Source Word (ESW ) 15 set 1n software only indirectly through the Exception Set Reg-
1ster and the Exception Reset Register, although 1t can be read by MFPRE; MTPR to the ESW 15 undefined and 15 treated as a no op by the
hardware.

Scrateh registers

Four 32-bit scratch registers, designated SCRO-5CR23 in Figure 5, are used by the kernel for its various activities. The goal ol having these
additional registers 15 to avold the need to save and restore context of general-purpose registers when switching between the kernel and user-
level code. The kernel can mstead copy the contents ol up to four of the general-purpose registers into SRO-SR3, then use the general-pur-
pose registers, and subsequently restore the contents of the general-purpose registers, thus avolding more costly memory accesses.

Program counter

The program counter (PC) maintains the address to the current instruction to be executed. Although user code causes the PC register to be
updated, 1t 1s updated indirectly through the execution instructions that change the flow of control in the program ¢i.e., branches, procedure
calls and interrupts and exceptions).

Upon execution of a branch instruction, the PC 15 updated by hardware to the target of the branch. For a CALL mstruction, the current PC 15
copled into SR31, and then the PC 15 updated to the starting point of the called function. A subsequent RET instruction will cause R31 to be
copied back to PC. On an interrupt or exception, the current PC 1s automatically copied into the FADR register (see description below), and
15 restored from FADR upon execution of a RFE mstruction.

Processor status word
The processor status word 15 shown as PSW 1n Table 5. A detailed description of the PSW and 11s operation 1s given in Chapter 8.
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Environment identifier

A 16-bit EID register records the currently active user context, and it 1s used to support communication between PIM nodes. A parcel arriv-
ing at a PBUF must have an EID in the header that matches the current EID register; otherwise, the parcel must be buffered, awaiting a PIM
context switch. The EID register 15 set by the kernel upon PIM context switch.

Timer registers

Two 32-bit registers, RCL and RCH, hold the low-order and high-order bits, respectively, of the real-time clock. The real-time clock pro-
vides a high-resolution measure of real time for indicating the time of day and date. The combination of RCL and RCH may be viewed as a
loadable 64-bit counter. At reset, the value of RCIH and RCL are all 0s and begin incrementing when reset 1s released. The real-time clock 1s
clocked by the CPU clock. Considering a probable CPU trequency range of 200MIHz to 1GHz tor implementations over the life of this archi-
tecture, the real-time clock will provide ranges of approximately 117 to 585 yvears at a Ins to 3ns resolution, respectively, RCH and RCL
values may be initialized to desired values through the use of the MTPR mstruction and are read using the MFPR mstruction.

The TIMER register 15 a 32-bit decrementing counter that provides a mechanism for causing an imterrupt after a programmable delay. The
Irequency of the TIMER decrement 15 the same as the CPLU clock frequency. The TIMER causes an exception (subject to masking ) when 1t
reaches 0 and begins immediately to count down the next interval without processor intervention. The interval 1s set by loading the TIMER
register with the interval value by initially using an MTPR instruction. Subsequently, the TIMER returns to the interval value the next cycle
after counting down to a U value.

Registers to support interrupts and exceptions
There are seven 32-bit registers, shown in Figure 5, that are used to support interrupts and exceptions. A detailed description of their usage
zan be found in Chapter §.

The Stored PSW register (55W ) holds the value of the PSW immediately prior to the interrupt or exception. The MADR and FADR registers
hold the address of the faulting memory address and/or faulting instruction, in the event ol an exception. If the cause of the exception was
Just a normal timer-initiated interrupt, the FADR register will hold the next instruction to be executed. All three of these registers are se
either by hardware in the event ot a hardware exception, or by MTPR instructions at the beginning of a software exception. The PC and PSW
registers are restorad with the values of FADR and S5W, respectively, on execution of a RFE mstruction,

The four additional registers to support exceptions are the Exception Enable Mask register (EMR), the Exception Source Word (ESW), the
Exception Set register (ESR ) and the Exception Reset register (ERR). The EMR register indicates which exceptions are currently enabled,
and 15 set by the supervisor. Fields of the ESW are set to | either directly by hardware in the event of a hardware exception, or by software
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setting corresponding bits in the ESR register for software exceptions. Fields of the ESW are cleared to O by software setting corresponding

bits in the ERR register. A description of the bit fields and their meaning can be found in Chapter 8

NAME Type Number Widih DESCRIPTION
SRU-5KA5] scalar =23l 32 Lreneral-purpose scalar regsiers
WEROIWERST | wideWord 0-3l 236 Creneral-purpose WideWord B
CC Sl 0o 5 LT, GT, ECy, OV, and TA Ints of scals 5
HI1 Lp 1 32 most sizmibicant 32 bots of multipheation result, remander of division
LO Sl o 32 least icant 32 buts of muluplication resull, quotient of division
LT Lp 3 32 Less Than condibion code r fer of Wideword Uit
GT sp ] 32 Grreater Than condition code register of WideWord Uit
| 28] Lp 10 32 Equal condition code register of WideWord Uit
CA 5P 11 i2 Carry condition code register of WideWord Unat
ov Lp 12 32 Chvertlow condition code regster of WideWord Unit
M sp 13 i2 WideWord Mask register used in selective execution
M P 14 5 WideWord Participation Mode rezister used in selective execution
FPSR sp 15 i2 WideWord floating-pomt status regist
SBO-SHY AT 0-7 32 Base remisters Tor local 1 For address translation
SLO-SL7 AT 8-15 i2 Latmut ¢ ters Tor local segments, used for address translation
GYEI-GVES AT 6= 19 32 Virtual base 1 eaments, used for address translation
GLO-GGL3 AT 20-23 i2 Latmut ¢ ters Tor global segments, used for address translation
GPBO-GPBS AT 24 .27 32 Physical base registers for global segments, used Tor address translation
PSW P ] 3 Processor status word
S5W P 1 5 Stored value of PSW, used i exception handling
EID P 2 16 Environment identfie
FADR P 3 32 Stored value of PC, used in exception handling
SCRO-SCR3 P 4-7 i2 Supervisor-level scratch registers
ESW P g 32 Exception source word
EMR P o iz Exception mask r
ESR P 10 32 Exceplion sel
ERR P 11 iz Exception reset register
MADR P 12 32 Faulting memorny address, used in exception handling
TIMER P 13 i2 Tumer for programmable delay nterrupts
RCL P 14 32 Lovw-order bits of real-time clock
RCH P 15 iz High-order bits of real-time clock
| 4 NA WA 32 Program counter

TABLE 1. Summary of registers
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User-Level Registers
Scalar Registers WideWord Registers

Supervisor-Level Registers

Supervisor-Level Special-Purpose Registers

SCRO —— PC TIMER 1 Esw ———1 ssw 1
-
- PSW ——— RCL ——— i ':'IZI FADR ]
SCRS —"— KD /4 RO ——— ERR ——y P T —

Figure 5: DIVA Node Registers
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Operand As stated earher, memory operations are assumed to be aligned at 32-bit boundaries for the scalar datapath, and 256-bat boundaries for the
Conventions wide datapath. Thus, on memory operations, the appropriate number of least significant bits in the address should be 0 (last 2 for scalar data-
path, last 5 tor WideWord datapath). Addresses in memory operations that do not conform to these rules will trigger an exception.

Following the convention of the PowerPC host, bits and byvtes are stored 1in BigEndian order in memory.
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Chapter 3 - ISA Summary

Scalar Instruction As shown in Figure 6. the DIVA scalar instruction uses a three-operand format to specify two 32-bit source registers and a 32-bit target reg-

Formats 1ster. For anthmetc/logical instructions using this format, there 1s also a C bit to indicate whether the current instruction updates condition
codes. However, the C bit indicates signed/unsigned arnithmetic for multiply/divide instructions, since these instructions never update condi-
tion codes by defimtion. In lieu of a second source register, a Lo-bit immediate value mav be specified, as shown in Figure 7.

0 hits 5 hits 5 hits 5 hits 4 hits O hits

opecode ri rA rB C function

Figure 6: Format R for Scalar Register Operations

0 hits 5 bits 5 bits 16 bits

opcode rD rA immediate

Figure 7: Format I for Scalar Immediate Operations

The branch mstruction formats are shown in Figure 8. The branch target address may be PC-relative or calculated using a base register ORed
with an ofiset. In both formats, the offset 15 i units of words, or 4 byvtes, since instructions must be on a 4-bvte boundary. Furthermore, the
L bit specifies linkage, that 15, whether a return instruction address should be saved in B3 1, referred to as a call instruction. Also, the CCC
ield speaifies one of eight branch conditions: alwavs, equal, not equal, less than, less than or equal, greater than, greater than or equal, or
overflow. See the branch and call instruction descriptions in the DIVA 15A document for details.
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WideWord
Instruction Formats

6 bits 3 bits 5 bits 16 bits

opeode 0|L| CCC rA offset
6 bits 3 bits 21 bits
opeode 1| L| CCC PC offset

Figure 8: Format B for Branches

As shown in Figure 9, “WideWord Arithmetic/Logical Format,” WideWord mstructions follow the general form of scalar instructions. Addi-
tional control information 15 included to manage the data fields of the WideWord, and to modify the execution of the mstruction. Figure 10
shows the format for transfers within the WideWord register file and across the scalar, FP, and WideWord register files.

6 hits 5 bits 5 hits 5 hits 2 bits 2 bits 0 bits
opcode wrh wrA wrB Cl PP |WW function

Figure 9: Format W for WideWord Arithmetic/Logical Operations

G bits 3 bits 3 bits 3 bits 2 bits 2 bits 6 bits
opeode rD rA Ly T PP | WW function

Figure 10: Format T for Wide-Word and Inter-Register File Transfers

The control fields are defined as follows
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HWH (width)
The WH held sets the width of the WideWord operands to eight., sixteen, or thirtv-two bits, which primarnly aflects the shaft
operations and the configuration of the carrv chain for additions and subtractions. For the merge instruction, these bits specily
the condition on which the merge 15 based. The encoding of these bits 1s listed in the following table:

WW Value Operand Width Assembler Mpemonic
o B buts i]
0 16 buts h
10 32 bats W
11 Reserved MA

C (condition code enable)
The € bit indicates whether condition codes will be updated as a result of the current instruction’s execution. However, the €
bit indicates signed/unsigned anthmetic for multiply, pack, and unpack instructions.

PP (participation)
The PP field interacts with condition codes to control whether a computation 1s performed on a given data field. The
participation field can specity that a data field participate always, only 1f a condition local to its own data field 1s true, onlvaf
the data field s the lefimost Deld with a condition that 1s true, or onlv i the data field 15 the nghtmost Hield with a condition that
15 true. The condition that 1s inspected for participation depends on the value of the PM (participation mode ) register. Refer to
Chapter 5 for more details. The encoding of the PP bits 1s histed in the tollowing table:

PP Value Participation Delinition Assembler Mnemaonic
(L] Always participate a
[} Spemﬁed by local condition o
10 Leftmost participation |
11 Rightmost participation f

I (rype)
The T bit governs whether the current instruction operates on a vector or scalar. Depending on the function, w2 or r4 may
specity a WideWord register. In this case, the T bit specifies whether the current transfer instruction refers to the WideWord
register as a whole vector or instead uses [y, to index a sub-hield of the WideWord register.

Lyp
WValue to be used as an index when a sub-field of a WideWord 15 involved i a transter. Depending on the function, this index
field may be an immediate or a scalar GPR specifier. Also, {4, may be coupled with either rf» or r4 depending on the

direction of the transfer as specified by the function,
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Concise List

A concise list of the mstructions in the DIVA Instruction Set Architecture (15A ) 15 given in Table 2.

TABLE 2. DIVA Instruction Set

l\ﬁwc DESCRIPTION FUNC DESCRIPTION FUNC DESCRIPTION |
] sy atem Call MTSFK by Branch on scalar condition
ICLI Instruction Cache Line Invalidate MFsPR BAx Branch on all WideWord conditons
KFE Return from Excephion MTFR Move to protected reg BNy Branch on no WideWord condition
MEPR Move Trom profected rex CALLx  [Call on scalar condihion

Scalar Instructions MTATR Move to address translation reg CALLAx [Call on all WideWord conditions
ADD Add MFATR Move from address translation reg  JCALLMNx [Call on no WideWord condition
ADDE Add extendad
ADDI Add immediate WideWord Instructions
ADDIC | Add immediate w' condition codes | WADD Add
SUB Subtract WADDE Add extended
SUBE Subtract extended WSLUB Subiract
SUBL Subtract unsigned WSUBE Subitract extended Special WideWord Instructions
ML MMultiply Wbl subfract ur WPRM  [Permute
MULL Muluply unsigned WMULES [Muluply e WPRMI | Permute immediate
D% Divide WHMULED [Multply e = WHMRG  [Merge basad on condition codes
DV Divide unsigned wWMULOS [Thultiply odd signe WFPhS Pack using sioned anthmetie
AND And WNULOU [ Multply odd w WPKI Pack wsing unsigned anthmetie
ANIH And immediate WAND And WUPKH |Unpack high-order bytehalbword
ANDHC And immediate w’ condition codes  [WNOF] Bilwise inversion WUPKL |Unpack low-arder byte'hallword
NOT Bitwise inversion WOK I
OR Or WAOR AT Transfer Instruciions
ORI Or imm le WSLL Sha MVSW  [Move scalar to WW
ORIC Or umim te wi condiion codes WSLLI Sha MVSWI |Move scalar to WW, indirect
ORIS Or immediate shafted WSRA Sha t MYWS  [Move WW o scalar
XOR Xor WSRAI Shaft arithmenc immediate MYWSI [Move WW to scalar, indirect
XORI Xor imimediate WSRL Shaft night logical MYWW [Move WW o WW
NORIC | Norimmediate w! condition codes WSRLI Shuft r lomcal immediate MYWWI | Move WW o WW, indirect
SLL Shift left logical WLD Load Reg From Mem
SLLI Shift left logical immediate WST Store Reg to Mem
SRA Shift right anthmetic WFABS Floatng-point absolute value
SRAI Shift night anthmetic imimediate WFADD Fl =paint add Miscellaneous Instructions
=KL Shift eight Logical WEFINY Fl -point divide LOKL Lock Load
=RLI Shift nght logical immediate WFMUL  |FI =point multiply LOKS Lock Store
LIy Load Kee from Mem WENEL Floating-point negale PROBLE [Probe address to deferming
E1) Store Keg 1o Mem WESUE Floa onil sulbtract locality

WEFTI Floating-pomnt 10 inleger Conversion

ELQ) Encode lefimost one WITF Integer o floating-point conversion
CLO Clear lefimost ong
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Introduction

Pipeline Stages

Major Signal Paths

Chapter 4 - Execution Pipeline and Scalar Datapath

The DIVA execution pipeline 1s modeled as a five-stage architecture, and 1s used to control the operation of the scalar and WideWord datap-
aths. Because the combined pipeline and scalar datapath are gquite similar to famihar RISC processor architectures, the operation of these
units are detailed together to simphiv description. A later section will describe the operations of the WideWord datapath. The stages of the
pipeline are named here, with an explanation of the major events occurring within that stage of execution.

We establish the convention that each stage views 117s local instruction and output to be synchronized at the next clock edge as the currens
instruction. While from an external view, there are five instructions “currently™ executing, the ALL stage sees an opcode, two operands, and
control and stored state as components of the “current”™ mstruction, This view of execution local to each stage 15 the convention used n all
descriptions of the pipeline.
F - instruction fetch
The F stage of the pipehine 15 where the address of the current instruction 15 applied to the mstruction cache and the instruction
15 located. At the end of the cycle the output of the instruction cache 1s latched mto the first register stage of the pipeline.
During the F stage, the address for the next mstruction is calcnlated. Note thar the calcwdation applies to sequential addresses
as well as branches.
D - register decode
During the R stage. operands tor the current nstruction are selected from the register file or the most recent value in the
pipeling forwardhing logic. In the case of an immediate istruction, immediate field of the current instruction 1s routed to the
SRC2 pipeline. The result 1s latched into the datapath D-stage registers,
X - execute
Depending on the mstruction, the X stage selects either the operands from the local register file, or an operand from the
WideWord register file, and forwards the result to the ALU, which performs the computation defined by the opcode and
value.tields of the current instruction.
M - memory
Register load and store instructions require memory accesses. To maintain consistency with the normal register-write logic,
memaory operations are begun during the M cyele, and the pipeling 15 stalled untitl memory arbitration and the required read
operation has been performed. During memory write operations, the pipeling 1s released as soon as arbitration grants access to
the memory.
W - write
During the W stage, the register file 15 written with the result of the current operation, whether a computation or a memory
read. During the W stage, memory write operations are allowed to complete.

Major data and control paths of the DIVA node processors are shown in Figure 11 and Figure 12. Execution pipeline logic 15 depicted in the
shaded area of the figures, while the unshaded area of the fgures shows the control pipeline and scalar datapath.
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T (Need to balance
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Figure 11: DIVA 5-Stage Execution Pipeline (F & D Stages)
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Restart Pipeline Pipeline  Subn Ret.
“Register-
relative base™

' - - “‘lidt“l.ﬂlld
] — — Data

PLD
Heg.
v Condition
Coudes
ALU, Shifter, ete.
fto ALU
out mux)
Daia X
Reg.
" i |
24b PLX Bypass Data
Reg.
Data M
Reg.
] |
to Memory o Mémory
Address Port Data Port

Figure 12: DIVA 5-Stage Execution Pipeline (D through W Stages)
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Scalar Computing The scalar datapath performs operations on objects of 32 bits or less. Reter to the DIVA Instruction Set Architecture document for a com-
Functions plete description of these operations.

DIVA Pipeline Numerous examples of a five-stage pipeline exist in the literature, providing a starting design-point for new machines, mcluding DIVA. We
Analvsis perform an analysis of the DIVA pipe to ensure no undue overhead 1s meurred by branches or other changes in program flow.
Address Calculations Figure 13 below 1s excerpted from the earher execution prpeline tllustration, Figure 11, The address calculation portion of the pipeline has

been highhighted to clanty the several parallel paths used to develop the address of the next instruction to be executed. Address computations
are performed in parallel to guarantee the fastest possible operations. The address calculations indicated n the figure are: po incremen,
pe offser, and regisier offsei, which correspond to the types of branches supported by DIVA.

pe ircrenienl

Instruction
Cache
Register
Write-Back
Return
0 GPR31)
Addr Tat
'To In
SRC1 Scalar
register_affsel SRC2 Reg. File
TGT

P SRCI 0w SRC2

Branch offset value
Register-relative

hase

Figure 13: DIVA Instruction-Address Pipeline
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Branch Pipeline States

Pipeline Hazards

Instruction Sequences

Register Operations

Memaory Operations

As shown i Figure 135, a branch instruction incurs a two-clock delay, or stall, before the first post-branch instruction can be accessed from
the nstruction cache and loaded into the execution pipeline. Because the branch mstruction doesn’t depend on the two ADD instructions, 1t
should be possible for the compiler to mowve the branch mstruction to the point before the first ADD in order to avold totally wasted dead
spots (or “bubbles™) in the flow of program execution. In the event a code sequence cannot be rescheduled, either logic 1s required to keep
the pipeline executing correctly, or NOP instructions inserted into the program to ensure proper operation. Obviously, 1t 1s simplest to insert
the NOP instructions as they require minimal pipeline control logic.

In pipelined systems, hazards occur when an operation 15 begun before another has completed, or before required results are available. In
DIVA, these are broken down into three classes: mstruciion sequences, regisier operations, and memory operaiions. Each of these hazard
classes is described below.

There are several instances of instructions that meur hazards due to “extra™ time required for completion. Among these instructions are inte-
oger multiply and divide. When these instructions reach the execute (X) stage of the pipeline, the pipeline 1s stalled for the required number
of clock cycles.

Register hazards occur when an instruction requires an operand that 1s currently in the data pipeline. In the simplest case, consider a stream
of nstructions where a register is required in the same clock cvele where 1t 15 being written into the register file. This hazard can be very sim-
ply eliminated by requiring register writes to complete in the first halt of each clock cyele, and performing all register reads during the
second half® This s well wathin the capabilities of the technology.

Consider the following code sequence, where an operand 15 not ready:

ADD R3, R1, RZ2 /* R3 Rl + R2Z */

ADD RE, R3, R4 /* R5 R3 + R4 */
Because R3 1s emerzing from the ALL as the first instruction finishes execution, 1t 1s not available to be fetched from the register file. This
hazard requires dypassing or forwarding to get the most recent copy of a register from a later stage in the pipeling, and move 1t to the AL

inputs, Selection is performed by comparing the destination address ol every register in the pipeline against the register specifications
accessing the register file. The most recent copy (closest to the ALLIN 1s selected, resolving events where several copies ol a register are in the
pipeline.

Memory-related hazards can ocour in DIVA. These are caused by the proximity of register load and store instructions. Consider the follow-
ing code sequence, which 1s typical of moving data for further processing:

MOV R1, RO J/* initialize the index */
LD RZ, TABL1l, R1 fE xS
ST R2, TAELZ, R1 f* xf

ADD R1, 0Oxl
Now it 1s impossible tor both the execution pipeline and the memory to respond to these two instructions as written. First, the pipeline can™t
store a value that has not vet loaded: the register write-back stage 15 affer the memory write stage. Second, there 15 no guarantee that the
objects TABL1 and TABL2 are located in the same open row in memory. As a result, an unknown number of delays will occur before the
store request will start in the memory,
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Participation

Participation field

Participation Mode

Chapter 5 - WideWord Datapath

The WideWord ALU supports selective execution of mstructions on sub-fields within a WideWord. Under selective execution, only the

esults corresponding to the data paths that participate in the computation are writien back, or committed, to the mstruction’s destination reg-
1sters. The data felds that participate in the conditional execution of a given mstruction are derived from the condition codes or the mask
register, plus the instruction’s participation field. The conditions used (condition codes or mask register) are specified in the participation
maode register. The instruction’s participation field determines how the condition code (or mask register) bits are combined to specify the par-
ticipation of each data path.

Each WideWord istruction with support for conditional execution has a 2-bit participation field. The participation field specifies four ways
i which the condition code (or mask register) bits are combined for determiming participation of each data path: ( 1) Always participate,
where all data Helds participate; ( 2) Local participation, where a data field participates only 1f a condition local to 1ts own data path 15 true;
131 Leftmost participation, where only the leltmost data field with a condition that 15 true participates; and (4) Rightmost participation.
where only the nghtmost data field with a condition that 1s true participates. The encoding of the participation field (£P) bits 15 desenbed n
the document “DIVA ISA Overview™, and 1s also listed in the following table:

PP Value Participation Definition
00 Always participate
01 Local participation
10 Leftmost participation
11 Rightmost participation

The conditions that are inspected for participation depend on the value of the Participation Mode (PM) register. The PM register is a 3-hit
egister that 1s read/written using the mEspr/mt spr instructions. The conditions correspond to the condition codes EC), GT, LT, OV or the

mask register M. The encoding of the Participation Mode 18 shown in the following table:

PM Value Mask/Condition Code
00001 M
00010 EQ)
00100 Gr
01000 LT
10000 ov

Any combination of the 5 conditions listed in the table can be used to determine participation. For instance, 1f the PM value 15 00110, the EQ)
and GT condition codes are ORed together to determine participation.

[n addition, o' the mask register is updated, the participation mode register 15 automatically updated to select M for participation.
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Setting the condition bits
Jfor participation

Permutation

The figure below tllustrates an implementation of local participation for data path 7 (note that this simple example 1s not a complete imple-
mentation of a participation bit and does not include the participation held bits )

Participation Mode register

M,

EQ,
GT,
LT,
oV,

./

I
Particin:
articipation;

Figure 14: Example of participation bit derived from PM register and condition codes

For simplicity, the WideWord ALL performs conditional write-backs {commits the results) on 8-bit datapaths, independently of the datapath
width of the istruction. Conditional operations on 16-bit or 32-bit data paths assume that the conditton hits for participation {condition
codes or mask register) are set consistently with the current datapath width. For example, an instruction that operates on 32-bit data helds
should have a 32-bit result written back to the destination register. for each participating 32-bit data field. Therefore, since the WideWord
ALL performs conditional write-backs of 8-bit walues. the 4 consecutive bits of the condition code/mask register corresponding to a 32-bit
datapath should be set consistently (either all ones, for participation, or all zeros). [t 1s the programmer’s responsibility to ensure that the con-
dittions for participation are consistent with the datapath width, either by setting the mask register or by performing a previous operation with
the same datapath width to set the condition codes.

The WideWord permutation network supports fast ahgnment and reorgamzation of data in wide registers. The permutation network supports
seneral permutations of 8-bit data fields, that 1s, any 8-hit data tield of the source register can be moved into any 8-bit data tield of the des-
tination register. A permutation 15 specified by a pers cltor, which 1s a 256-bit object containing 32 indices corresponding to the 32
8-bit data felds of'a WideWord. Each 8-bit field of a permutation vector corresponds to the same 8-bit data field of the destination register,
and contains the mdex of the source data field to be moved into that destination field. The figure below illustrates a permutation on 8-bit and
I 6-bit data paths, and the corresponding permutation vectors.

Il ion
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Example (a): shuffle sequences of 8 fields, for 8-bit data fields

sowrcereg [T T T TT T T T T T T I T T TTITIIT T T TITTTTI1T]]

L ¥ L L
dest reg I L1 I L|

perm vector 31,27,30,26,23%, 35,28, 34,23,10, 22,16, 21,17, 20, 16,1511, 14,10, 13,09, 12, 08,07, 03,06, 02,05, 01,04, 00

Example (b): shutile scquences of B ficlds, for 16-it data ficlds

SOUTCE TeE

dest reg

perm vector 31,30,32,22,29,28,21,20,27, 26,19, 18,25, 34,17, 1,15, 14,07, 06, 13,12, 05, 04, 11, 10,03, 02,05, 08,01, 00

Figure 15: Example of permutation vectors for 8-bit and 16-bit data paths

The WideWord supports two tvpes of permutation operations, wprm and wprmi. In wprm the permutation vector 15 1n a general-purpose
wide register, allowing permutation vectors to be loaded from memory and mampulated using WideWord operations. wprmi selects a per-
mutation vector {rom a lookup table, supporting faster permutations (one operation) for the set of frequently used permutation vectors in the
table. The hardwired permutation vectors are listed in the following table, and the permute instructions are described in more detail in the

document “DIVA ISA Overview™

index vector

0x00 0x000102030403060708090A0B0CODOEOFION112131415161718I91AIBICIDIEIF
0x01 0x0102030405060708090A0BOCODOEOFT01112131415161718191AIBICIDIEIFDD
0x02 2131415161 718191 A1BICIDIEIFO0O01
0x03 31415161 71R191AIBICIDIEIF000102
0x04 115161718191 AIBICIDIEIFOO010203

0x03 J4I5161TISI9IAIBICIDIEIFOOO01020304

Oxié
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imdex

vector

007 0x0708090A0BOCODOEOF IO 2131415161 TIRISTAIBICIDIEIFOO01 0203040506
008 0x0F090A0BOCODOEOFIOT1IZIZ1415161TIBI91AIBICIDIEIFO001 020304050607
) 0x090A0BOCODOEOFIOTIIZI3 1415161 TIRI9IAIBICIDIEIFO00102030405060708
Ox0A Ox0AOBOCODOEOFIOTTIZI31215161TIRISIAIBICIDIEIFO00102030405060T0809
0x0B Ox0BOCODOECE1OTT1213 1415161718191 AIBICIDIEIFO00] 0203 0405060 7080904
0x0C Ox0CODOECFIOTT1213 1415161718191 AIBIC 1D ETFO00 102030405060 708090 A06
0x0D Ox0DOECFIO1T1213 1415161718191 AIBICIDIEIFO00 102030405060 708090A0B0C
0x0E Ox0EOF101T1213 1415161718191 AIBICIDIENFO0010203 0405060T0R090A0BOCOD
0x0F OxOF 1011213141510l TIS191IAIBICIDIEIFOOO1 02030405 060708090 A0B0CODOE
x10 01011121314 15101 712191 AIBICIDIETFOMI 0203 0405060708090 A 0B 0 0DOEOF
ox11 0111213141 5161718191 AIBICIDIEIFOO0 10203 0405060708090 A0BOCODOEOF 10
0x12 Ox 1213 1415161718191AIBICIDIEIFO00102030405060708090A0B0CODOEOFTOT]
0x13 0x13 1415161718191 AIBICIDIEIFOO01 02030405060708090A0B0CODOEOFIOTT12
x4 Ox 1415161718191 AIBICIDIEIFO00102030405060708090A0B0CODOEOF 0111213
Ox15 0x 15161718191 AIBICIDIEIFO001 02030405060 T0R090A0BOCODMEOF 10111215314
Oxl6 0161718191 AIBICIDIEIFOO01 0203 0405060708090 A0B0CODOEOFIOIT12131415
017 OxI7IEI91AIBICIDIEIFOO0102030405060T0R090A0B0C0D0OEOFI0IT1213141516
Ox18 O [E191AIBICIDIEIFO00102030405060708090A0BOCODOEOFIOTT121314151617
0x19 Ox 191TAIBICIDIEIFO00102030405060708090A0B0CODOEOFIOTT1213 1415161718
Ox1A 0x IAIBICIDIEIFIO102030405060T0890A0OBOCODOEOF 10111213 141516171819
0x1B 0x1B1C1DIEIFOO0102030405060708090A0B0CODOESF IO 2131415161 718191A
ox1C 0x1C1DIETFOO0 10203 0405060708090 A0BOCODOECFIOITI213141516171R8191A1B
0x1D O 1 DIETFOO0 02030405000 708090A0B0CODOEOFIOITIZ13141 5161718 191AIBIC
x1E O 1ETFO00102030405060708090 A0BRCODOEOFIOT11213141516171R1S1AIBICID
0x1F Ox 1FO00 102030405060 T0R0S0AOBOCODOEOF IOTT1 2131415161718 191AIBICIDIE
020 0x000Z20406080A0COE10121416181 ATCIEOIOZ050T0S0BODOFITI31517191B1DIF
0x21 0x010003020504070609080B0A0DOCOFOEITIONZIZIS14171619181BIAIDICIFIE
0x22 0x03020100070605040B0A0%080F0EODOCIZIZITIOITIGISI4IBIAISISIFIEIDIC
0x23 0x07060504030201000F0EODOCOBOADSORITIGIST4IZIZITIOIFIEIDICIBLALIS9IS
0x24 Ox0FOEODOCOBOAOSOROTO605040302010IFIEIDICIBIAISIBITIONS 1413121110
0x25 OxIFIEIDICIBIAISIBITIONS 1413 121 1 IOFOEODOCOBOADSOR0TOG050403020100
26 0x0002Z01 0304060507080 A0S0BOCOEODOFIOIZITIZ14161517IBIAI9IBICIEIDIF
0x27 Ox0004010502060307080C090D0ACEOBOFIO14111512161317181CI91DIAIEIBIF
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index vector

028 000 JADZOB4OCOS0DOGOENTOFIOIRITI9IZIALZIBI41CIS1DIGIELTIF

029 0 40508090C0DI0TTT41518191C1D0203060TOAOBOEOF 1 213161 TIAIBIEIF

Ox2A 0 1001060704050 ADBORISOEOFOCODI2131011161714151A1BIRISIEIFICID
0x2B Ox060704050203 0001 0EOFOCODIAOBOS09161 714151213101 NTEIFICIDIAIBIZIY
0x2C Ox0EOFOCODOAOBOS090607040502030001 IEIFICIDIAIBIS191617141512131011
0x2D DxIEIFICIDIAIBIS19161714151213101 10EOFOCODOAOBOS09060704051 il
0x2E 3060708090C0D0ACBOEOF101114151213161718191C1DIAIBIEIF
03x2F 30ADBO40SOCODOGOTOEOF 1011181912131 A1BI4151CIDISITIEIF
0x30 0x0001020308090A0B 1011121318191 A1B040506070C0D0EOF14151617TICIDIEIF
0x31 0x04050607000102030COD0DEOFIR00A0B 14151617101 112131C1IDIEIFIR191A1B
0x32 0x0CODDEOFIS090 ADBI405060700010203 1C IDIEIF18191AIBI1415161710111213
0x33 0x1CIDIEIFIZ191A1B1415161 71011121300 0D0EOFOR090AOBO405 060700010203
0x34 0x0001020308090 ADBO403060TOCODOESFIO11121318191A1B141516171CIDIEIF
Merge The WideWord unit supports a special instruction (wmrg) for merging data from two source registers according to a given condition. The

condition 15 specified by the WW field of the instruction, and can be one of the condition codes EQ), LT or GT, or the M register. The follow-
ing table shows the encoding of the WW field

WW Value o
UL E)
0 LT
10 GT
11 M

The figure below illustrates a merge operation using the condition LT, The condition codes are set by a previous weubco instruction with the
same data path width as the wmrg mstruction.
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Paclk/Unpack

Transfers

waubow r4, rl, rz
wnrgltsw ri, rl, r2

LT{cor‘dtcn]l 1|1|0|1|0|0|1| ol

4

rl|1|?|5|6|2|9|3

A setof transfer instructions allows data to be moved between the several register files: (1) between wide registers and general-purpose sca-
lar registers: (2] from wide register to wide register; and (3 ) between general-purpose integer registers and special-purpose or protected
egisters, The transter functions where the source 15 a scalar value (scalar register or a data field i a wide register), and the destination 15 a
wide register allow the source data to be repheated and stored into all the helds of the destination

The complete set of transter instructions 15 listed in the table below, and each instruction 15 desenibed in detail in the document “DIVA ISA

Overview™,
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name mnemonie Syntax operation
move from protected register MFPR D), pra The contents of protected register pra are stored D
move from special-purpose register MESPR D), spra The contents of special-purpose register sprA are stored in .
move to protected register MTPR prD, rA The contents of rA are stored in protected register prD.
move o special purpose register MTSPR sprid, rA The contents of A are stored i special-purpose register spri.
move from scalar to wide MVEW wrD, rA, index Some portion or all of the contents of rA are transferred to a subhicld of
wrlD, starting at the byte specified by the byte index. @
MVEWR wrD, A The contents of rA are repheated to torm a 256-at value which 1s
transterred to wrD, subject to participation.
move from scalar to wide mdirect MWVEWI wrD, tA, 1B Some portion or all of the contents of A are transterred to a subhield of
wrl), starting at the byvte specitied by the low-order bit contents of ri& P
move from wide to scalar MWVWS D, wrA, index A subfield of the contents of wrA starting at the byte specified by the byte
index are transferred to 1D, 1
move from wide to scalar indirect MWVWSI rD, wrA, 1B A subfield of the contents of wrA starting at the byte specified by the low-
order bits of the contents of 1B are transferred to rD. =7
move from wide to wide MWVWW wrD), wrA, index | The enbire 256-bit contents of wrA are transferred to wrD. subject to
parbicipation.
MVWWER wrD), wrA, mdex | The subficld of wrA starting at the byte speaified by the byte index 1s

replicated to form a 236-bit value which 15 transferred to wrD, subject to

participation. .

replicating

move from wide t

wide indirect

MYVWWERI

wrD, wrA, 1B

The subfield of wrA starting at the byte specified by the low-order bits of
the contents of vB 1s replicated to torm a 256-bit value which 15 transferred

- . . 7
to wrl), sulject to participation.”

a.Depending on the

stze of the data to be transferred. the least sigmificant bits of the index may be 1gnored to ensure proper ahgnment.
b.Depending on the size of the data to be transferred, the least sigmificant bits of the contents of 1B may be ignored to ensure proper alignment.

c.For data sizes less than 32 bats, the high-order bits of D are cleared.
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Chapter 6 - Memory Unit

This chapter presents the basic functionality of the assumed DRAM memory macro as well as the essentials of a memory controller needed
with each macro on a DIVA PIM chip. This controller serves to arbitrate among the various requests for access to a DRANM macro and take
advantage ol page-mode accesses wherever possible,

A DRAM array similar to the DRAM macro provided by the IBM SA27-E process 1s assumed. This macro exhibits features of typical
DRAM: page-mode accesses, refresh, ete. Unlike conventional DRAM, however, 1t supports a full address bus, rather than a row-column
multiplexed one, and a very wide 236-t data bus. Specifically, the input signals to the macro are: macro select {simular to RAS m conven-
tional DRANM ). page-mode select (similar to CAS in conventional DRAM), write enable, refresh enable, an address bus where 3 bits of the
bus are treated as a column address, a 256-bit input data bus, and a 256-bit write enable bus. The only output signals are a 256-bit output data
bus. There are also some test input/outputs, but these are not crucial to the DIVA architecture design. The macro page size 15 2048 bits; each
page contains 8 distinet addressable 256-bit units ol data. For an example of the tming benefits of page-mode accesses, the page-mode cycle

time in the SA27-E technology 1s 6.6ns while the random mode cvele time is 20ns.

Refresh ) Memory Memory
i, I Arhiter  pel—- N .
[MTmer Interface

' Array

Current Page
Memory Address
Requesters

Figure 16: DIVA Memory Controller

A diagram of the memory controller 1s given in Figure 16, The basic components of the memory controller are an arbiter, a refresh timer, the
Current Page Address register, and the Memaory Interface. The arbiter 1s responsible for handshaking with all possible requesters ol access to
the memory array and determining the priority of competing requests. It communicates closely with the Memory Interface, which s respon-
sible for generating all control signals to the memory array, such as address bits, macro select and page-mode select strobes, refresh pulses,
write enables, ete. The Current Page Address register contains the address of the page which 1s currently held in the sense amps of the mem-
Ory array.

The operation of the memory controller 15 best described by the flowchart given in Figure 17, Upon reset, the memory controller is in an idle

refresh and normal access (read or write). It a refresh cyele 1s pending, it 15 performed. Note that no address 1s needed for refresh cycles.
However, the refresh cvele corrupts the sense amps so the contents of the Current Page Address register are no longer vahd.
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[ the access request that “wins™ the arbitration phase 15 not a refresh request, 1.e. 1t 15 a normal access, the address presented with the request
15 compared against the contents of the Current Page Address register, assumung that a page 1s currently open. 11 the portion of the requesting

address which designates the DRAM page matches the value of the Current Page Address register, the access 1s performed as a page-mode

access, minimizing latency. It the two values are unequal, a random access must be performed, which entals restoring the currently open

address 15 latched into

page and strobing in the new page corresponding to the access request. Simultaneously with this access, the new pa

the Current Page Address register

Arbitrate

Perform Perform
Random Refresl
Access rent Page efresh
Addres
Y
Invalidate
urrent Page
Latch New Perform Address Register
Current Page Page-mode '

Address Access *

Figure 17: DIVA Memory Controller Flowchart
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Sources of Requests
and Arbitration
Priorities

Requests for normal accesses, 1e. reads and writes, mav onginate from several sources within the PIM node. The possible sources are the
host interface port, the processor instruction cache, and memory stage of the processor pipeline. With the possibility of these sources com-
peting for memory access, arbitration prionties must be formulated. As indicated in the flowchart of Figure 17, refresh cycles have the
highest priority, The following priorty includes the remaining sources:

. Refresh
2. Host interface

3. Processor memory stage

# Processor instruction cache
Adter refresh, the host interface has the highest priority since minimal latency penalties for conventional DERANM accesses are highly desired.
Since a memory request from either the memory stage or the instruction cache of the processor will stall the processor pipeline, the priority
between these makes hittle difference. I there are requests pending from both, they must both be satisfied before the pipeline can advance,
However, the processor memory stage 15 assigned a higher priority to simphiy the pipeline control logic since the memory stage 15 deeper in
the pipeline than the instruction fetch stage.
To request a memory access, each of these units must provide an address, type of access (read or write), and data (for write operations). [n
addition to these signals, there are handshaking signals between the arbiter and these units to indicate when requests are pending and when
they have been granted.
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Chapter 7 - Instruction Cache

[t 15 of entical importance to keep instruction fetches from interfering with the Now of operand data from the node memornes. In addition to
the reduction ot operand data bandwidth due simply to contention, instruction fetches from memory reduce bandwidth even further due to
the resulting increase in memory latency because thev disrupt reference locahty. Since the code segment ol an apphcation 1s placed n a dif-
ferent area of memory from the data segment. interleaving instruction fetches with operand fetches from memory would cause many random
memory accesses that could have otherwise been satisfied in a page-mode fashion. DIVA avoids most of the bandwidth losses by implement-
ing a small instruction cache.

The DIVA PIM node processor contains a 4-Kbvte, direct-mapped mstruction cache. The cache line s1ze 15 32 bytes, each of which can be
lnaded or mvalidated individually. In addition, the entire cache can be invalidated by disabling the cache. The DIVA architecture does not
support sell=modifying code, so the instruction cache does not require any write-back capability. The cache does not contain a snooping port
and 15 theretore not kept coherent with memory automaticallv, Kernel software 15 responsible for invahdating stale cache lines when the
backing memory for those lines 1s being loaded with new code.

The cache consists of three major components: core ram, tag ram, and the controller. A diagram showing the organization of the core ram and
tag ram 1s shown in Figure 18, The core RAM consists of 128 lines. where each line 1s 256 bits long. Each hine 1s then capable of storing eight
32-bit instructions. The tag RAM contains a 20-bit tag for each line ol core RAM, although the tag size could be reduced to match the
amount of physical memory actually present and thereby optimize the storage and performance ol tag accesses. Each tag RAM line also con-
tamns a valid-bit to indicate whether the line contents 15 empty or 1t actually contains valid information.

Tag RAM Core RAM
Line 0] Address Tag |V [nstructions
» ]
» ]
- ]
Line 127
M— 20 bits —— W1 bit it 256 bats

Figure 18: Instruction Cache Organization

A physical address 15 decoded as shown in Figure 19 for determining placement or vahdity within the cache. The least two significant bits
are 1gnored as they should always be zero because instructions are 32 bits in size and aligned to 32-bit boundaries. Bits 27 through 29 are
used to select a specific mstruction within a cache line, and bits 20 through 26 are used to spectly the cache hne. The upper 20 bits are then
used as the tag information for a cache line. The instruction cache unit operates closely with the address translation unit. For example, the
least significant 12 hits of instruction virtual addresses are assumed to be unaftected by the address translation process. Theretore, these bits
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Instruction Cache
Operation

can be used to index into the cache simultaneously with the translation of the upper 20 bits. By the time the appropriate tag has been
accessed, the translation has taken place, so that the tag contents can be compared with the physical address.

physical tag line number imstruction| 00

0 19 20 26 27 29 30 31

Figure 19: Instruction Cache Address Interpretation

The operation of the instruction cache 15 best described by delining the tasks of the cache controller. The controller 15 responsible for man-
aging all activity of the cache, including instruction fetches from the cache, loading cache lines from memory, and invalidating cache lines.
The controller 1= basically a fimite state machine (FSM ) with three states, where each state has sub-states. The FSM diagram 15 shown in Fig-

ure 20,

Hit Inv Enable

Enable

N -
Normal Enable Disabled
]

Hit Hit

[ Service
Hit

Figure 20: Cache Controller Finite State Machine

Enable
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Instructions

At processor boot time, the cache controller in the disabled state. In this state, when the processor makes an instruction request, a 256-bit data
item including the desired instruction 1s fetched from the memory, the requested mstruction is selected from the incoming data, and placed
onto the instruction bus. All the valid bits are also reset when the controller enters the disabled state.

When code enables the cache, which asserts the enable signal, the controller enters the normal state. In this state two operations are possible:
read and invalidate. During a read operation the controller performs an instruction fetch by comparning the tag portion of the supphed address
with the tag of the appropriate hine of the tag RAM. If thev match and the vahid it is set, then the desired word 15 selected, placed onto the
instruction bus, and the hit signal 15 asserted. Otherwise, the hit signal 15 negated. and the controller enters the memory service state. I the
INY signal 15 high, then the valid bit of the cache line specified by the instruction address 1s reset if the tag of the address matches the tag of
the line.

The memory service state 15 very similar to the disabled state. The only difference 1s that when the data 1s fetched from the memory, it 1s also
written to the appropriate core RAM line, the tag 1s written to the corresponding line of the tag RAM, and the valid bit of that line 15 asserted.

The only cache control instruction supported by the DIVA instruction set 15 the 1ch (instruction cache line invahdate) mstruction. This
instruction supphes an address using the register plus offset addressing mode. If the address 15 found in the cache, the corresponding cache
line 15 mvahdated.
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Chapter 8 - Exceptions

This chapter defines the exceptions and exception-handling mechanism for the DIVA PIM node. Exceptions, ansing from execution of node
instructions, and interrupts, from other sources such as an internal timer or external interrupt signal, are handled by a common mechanmsm.
For the most part this document will refer to both exceptions and interrupts as exceptions.

Traditionally RISC processors have had relatively primitive mechanisms for exception handling compared to CISC processors which may
have multiple stack registers, extensive hardware-supported vectoring and priority-level controls of enabling exceptions. Even with these
supporting hardware features, 1t's common to find problems of prionty mversion and stack management errors in interrupt-service software,
Errors in prionty assignment are not easily fixed once cast in hardware. Exception handling hardware 15 difficult to implement and integrate
with high-performance hardware.

The exception handling scheme for DIVA has a modest hardware requirement, exporting much of the complexity to software, which 1s easier
to mend. It does provide an integrated mechanism for handling hardware and sottware exception sources. Additionallv, 1if provides a flexible
priority assignment scheme which minimizes the amount of ttime that exception recogmition is disabled. While the hardware design supports
traditional stack-based exception handlers. we also outhine a non-recursive dispatching scheme which uses DIVA hardware features to allow
pregmption of lower-priority exception handlers using a mechanmism which should be easier to debug.

The DIVA node processor must respond to a vanety of excepbions due to iternal mstruction processing conditions and interrupts due to
external stimuli. The PIM node processor has only four hardware-vectored exceptions, all others are dispatched by software with some hard-

ware assistance. The exceptions are hsted in descending priority order.

TABLE 3. Hardware-Vectored Exceptions

Exception Vector Notes
Address
Hard RESET TBD | Power-on clear and/or dhagnostics
Soft RESET Ox0B000000 | External reset
Undetined Instruction (incl. BRK) Ox08000100
Software-vectored exceptions Ox08000200

he assignment of a vector address (o the hard RESET exception depends on a specification of the initial program

.

el B Wstrap
mechanisn,

MNote that the three vector addresses other than the hard RESET point to exception handler routines located at the start of node DRAM. so the
node DEAM must be mmitiahzed and functional for any operation beyvond hard RESET.

All exceptions other than reset and undefined-instruction exceptions are vectored by hardware to the catchall “software-vectored exception”™
handler. which examines the exception source word to perform a software-vectored dispatch to the appropriate exception handler.
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Exception
Descriptions

The node processor has several privileged registers and a privileged instruction, RFE, used to return from exception handlers to normal
Processing,

All exceptions operate in supervisor mode. The program counter and processor status words are copied to privileged temporary registers
betore exception processing 15 begun The exception handling code runs in the same address map as the preceding code. Other state changes
are performed at the exception handler 1t necessarv, Chiher registers are set by specilic exception conditions, e.g., MADR 1s set in the event

TABLE 4. Hardware State at Start of Exception Processing

Register Field Value Notes
PSW MD 0 Muode 1s set to supervisor, other fields unchanged
PC handler Address ol exception handler
FADR old PC Address of taulting instruction or next instruction
S55W old PSW Saved copy of prior PSW

of a memory-access exception. The exception source word 15 set to indicate the cause of all but the reset and undefined-instruction excep-
tions, which are implicitly identified by the hardware vectoring to associated exception handlers. The exception source word and its
associated enable mask register are discussed at more length in the “Software-Vectored Exceptions™ section. The reset and undelined-
instruction exceptions may not be disabled. All other exceptions mav be disabled in aggregate by setting a bit in the PSW or selectively, by
setting a bit in the exception-enable mask register.

Upon completion of exception handhing, the RFE instruction will copy the FADR fo the PC and the 55W to the PSW to resume normal pro-
cessing. Depending on the cause of the exception, the FADR may point to the instruction that caused the exception, if the exception
prevented the instruction from completing, or to the next mstruction in the code sequence, 1if the prior instruction did complete, For example,
a memory access fault would load the FADR with the address of the load or store instruction which caused the access exception, while a
tmer interrupt or external interrupt would load the FADR with the next instruction to be executed. The exception handling code 15 responsi-
ble for adjusting the FADR as needed prior to executing the RFE instruction. Depending on the nature of the exception, the faulting
nstruction may be retned, for example a WideWord instruction afier a lazy register save, or a memory access instruction after an address-
translation adjustment.

The node processor provides four scalar system scratch registers to be used by exception handlers. Exception handling code requiring more
registers are responsible for saving and restoring node processor registers as needed.

Hard RESET (0xTBD)
This exception provides a starting point for power-on imtialization and {optionally ) selt-test and diagnostic functions for the node. It can be
triggered by internal power-on detection circuitry or an external source. At the conclusion of imtialization and testing the node processor 15
ready for imitial program loading by a mec/ '

misme THOL This mechanis

i may be simplified for a node attached 1o a fiost via its system

imterface.
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In contrast to the solt reset, which generally preserves present hardware state and register contents, a hard reset will set certain hardware to
a known state to allow straightforward mitialization.

TABLE 5. PSW State at Hard or Soft RESET

Bit Field Value Notes
(0 MD 0 Mode is set to supervisor
1 Unused X Reserved
2 1C 0 Instruction cache is disabled
3 EE 0 Exception recognition is disabled
4 WW 0 WideWaord instruction processing 15 disabled
3 FP 0 Floating-Point Instruction processing 1s disabled
6-7 [Inused X Reserved
8 [A 0 Instruction address translation is disabled
9 DA 0 Data address translation 15 disabled
10-3] Unused X Reserved

Soft RESET (0x08000000)

Adter a kernel or montitor program has been loaded into functional DRAM, the external RESET mput causes instruction execution to hegin
at this DRAM address. It 1s anticipated that this RESET can be triggered either by an external input or by the host processor accessing the
node via 1ts

‘stem interface.

[t 15 expected that a soft reset handler will dump a detailed snapshot of node status to memory to aid debuggmg betore reimtializing the ker-
nel or momtor data structures.

Undefined Instruction (0x08000100)

This vector services all undefined instruction exceptions and also serves as the primary exception handler for breakpomt instructions. Break-
point instructions are implemented by a software convention defining one or more undefined mstruction opecodes as BRK,. The FADR
register points to the address of the undefined instruction. To allow the BRE mechanism to debug exception handling code, we adopt the
convention that SR3 15 reserved exclusively for use by this exception handler, which does not use other scratch registers. This 1s not adequate
to allow use of BRI prior to copying of FADR and S5W however,

Software-vectored exceptions (0x0800020(0)

This vector provides the imitial exception handling for all other exceptions and interrupts in the svstem. Recognition of this
tion may be disabled by privileged code altering the PSW and 15 automaticallv disabled upon exception recognition, to remove any hardware
requirement to support nested exceptions.

raregate excep-
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Hardware Support
for Software-
Vectored Exceptions

Most exception sources in the DIVA PIM are serviced by a solftware-vectored exception handler. Determination of the exception cause
requires examination of the 32-hit exception source word, which constantly monitors hardware which may cause exceptions and also pro-
vides the ability for software to trigger exceptions.

Mested exceptions can be supported 1f the exception handler saves essential state, notably FADR and S5W, prior to reenabling exceptions.
The software-vectored exception handling procedure supports nesting of exceptions lor some potentially lengthy handlers by sphtung the
gxception handler into primary and secondary parts. Primary exception handlers are non-interruptible except for reset and undehined-instruc-
tion exceptions. Secondary exception handlers may be interrupted by other exceptions. They may or may not be re-entrantly interrupted by
other instances of the same exception type, depending on the handler code treatment of the mask register.

Lightwerght exceptions are those which can be serviced completely within the primary exception handler, and do not require saving of tran-
sient exception state. Hardware disables further exceptions until reenabled by execution of RFE,

An example of a lightweight exception 1s the timer tick exception, which increments a counter in memaory, [f the tick does not end a sched-
uling quantum, no further processing 15 required. 11 the tick does end a scheduling quantum, 1t triggers a quantum-expiration exception, but
does no further processing itsell

Heavywelght exceptions are those which cannot be serviced entirely within a primary exception handler. The primary exception handler
saves necessary exception state in one of three locations. Temporary use 1s made of the system scratch registers. Processor context 1s saved,
as necessary, 1n a register save area 1n a fixed-location memory area common to all primary exception handlers. Information specific to the
particular exception, which 1s required for later processing by the secondary exception handler 15 saved 1n a fixed-location memory area spe-
cific to that particular exception tvpe.

Primary exception handlers perform all of the processing for lightweight exceptions and the imitial time-critical portion of heavyweight
exceptions.

The environment of primary exception handlers 1s highly constrained. They mav use the svstem scratch registers SRO-5R3 freely but must
save and restore any other GPRs. Primary handlers may call other routines conforming to the constraints, but must use the exception stack,
which is located at the top of the kernel stack segment. Calling a subroutine in the primary exception handler environment requires inttializ-
ing the stack pointer to the fixed top of the exception stack area. Primary handlers are written in assembly language.

Secondary exception handlers perform the non-initial processing of heavyweight exceptions. They may not use the system scratch registers
SRO-5R3, since exceptions are enabled dunng most of the execution ol the secondary handler. Secondary handlers may be written in a
restricted subset of the C language. Secondary handlers are written in a stylized form providing functions to suspend and resume their pro-
cessing 1 preempted by higher priority exceptions.

All software-vectored excepltion sources have an associated it defined in the 32-bit exception source word, ESW, and corresponding bits in
the exception-enable mask register, EMR, the exception set register, ESR, and the exception reset register, ERE. When a software-vectored
gxception 1s recognized, the global exception enable bit in the processor status word, PSW, 15 cleared, so that hardware events which cause
changes to the ESW cannot trigger a nested exception. Reset and undefined instruction exceptions may preempt primary exception handling
code, but other exceptions will not be recognized.

The exception source word 1s a 32b register recording exceptions mitiated both by hardware and software sources. Hardware-source bits in
the exception source word may be set to one by hardware conditions, such as a pbul interrupt, while software-source fields are set by sofi-
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ware writing a one 1o the corresponding bit location in the exception set register. Oncee set, a bit in the exception source word can be cleared
only by writing a one to the corresponding bit of the exception reset register. Although labeled registers, both ESR and ERR are really reg-

TABLE 6. Exception-Related Registers

Name PR Deseription
Exception Source Word (ESW) 8 Specifies sources of excephions
Exception Enable Mask Register (EMR) 9 Bitwise exception enabling mask, | = enabled
Exception Set Register (ESR) 10 Write | to set corresponding bit in source word, SW-

source helds only

Exception Reset Register (ERR) I Write | to clear corresponding bit in word register

ister-address triggering functions. That 15, a one written to any bit in either of these registers causes an immediate and one-time etfect on the
corresponding bit in the exception source word; ESR and ERR do not maimtain any state

Bits in ESW are affected by hardware conditions and ESE and ERR actions regardless ol settings of the exception enable mask register.
EMIE. The bits of EMRE merely enable, or disable, corresponding bits of ESW to cause exceptions. Therefore, there is a global exception
enable control via the excephion enable bitin PSW and individually maskable controls for cach bit of the ESW via the EME.

"

The Exception Source Word has 32 possible hardware- and software-initiated exception sources. The prionty of the sources decreases with
increasing bit number.

TABLE 7. Exception Source Word

Exception Name [nitiator Bit# Deseription
Watchdog Timer HW 0 May not be implemented
Unmapped Instruction Access HW I [nstruction access not within segment boundaries
Invahd Instruction Access HW 2 [nstruction access not permitted
Unmapped Data Access HW 3 Data access not within segment boundaries
Invahd Data Access W 4 Data access not permitted
PBul Receive Interrupt HW 5
PBuf Send Error HW 6
Interval Timer HW 7 Tick counter
WideWord Not Available HW 8 WideWord nstructions attempted without enable
Floating Point Not Available HW g Floating-point instructions attempted without enable
Address Fault Fix-up SW 10
Received Packet Processing SW 11
send Error Processing SW 12
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Dispatch of
Software-Vectored
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Dispatcl to the primary
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TABLE 7. Exception Source Word

Exception Name [nitiator Bit# Deseription
Reserved SW 13
Host Interrupt HW 14 May not be implemented
FP Drvide by Zero HW 15 Reter to FPSR description
Host Interrupt Processing SW 16
FP Unsupported Value HW 17 Reter to FPSR description
Context Swapper SW 18
System Call [TV 19
Privileged Instruction Vielation HW 20
Scalar Integer ALU Exception [TV 21
WideWord Integer ALU Exception [TV 22
FP Inexact/Invahd HW 23 [Refer to FPSIR deseription
Integer ALU Frx-up SW 24
WideWord ALLU Fix-up SW 25
Floating Point Fix-up SW 26
Reserved SW 27
Lock Buzzer SW 2& May not be implemented
Thread Rescheduler SW 29
Thread Dispatcher SW 30
Return to User Mode SW 31 Full register restore as necessary

The DIVA PIM node exception handling mechansm requires hittle specialized hardware support and supports preemption of lengthy low pri-
orty handlers without requiring LIFO processing due to stack mechanisms. Dispateh 15 always to the highest prionty exception handler.
There 1z no possibility of pathological stack growth under high rates of exceptions. System overload due to design problems will manitest as
overruns, which can be evident and recoverable, rather than stack explosion, which s typically obscure and fatal.

A new exception condition will be recognized i exceptions are enabled in the PSW and 1f the particular source 15 enabled by the mask reg-
ister. The hardware begins execution of code at the software-vectored exception vector address. Exceptions are disabled in the new PSW.
Since the primary handlers are non-recursive and run to completion, processor state can be saved to a reserved temporary area at a fixed
address (rather than a true stack) as needed by the particular handler
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The exception source word 15 copied into a scalar GPR and the ELO instruction 15 used o encode the bit number of the leftmost (smallest
numbered) set bit. This operation selects the highest priority source. The encoded source bit number is used as the index into a vector of han-
dler addresses, and the processor branches to that primary handler.

The selected primary handler determines whether the exception 1s hghtweight enough to be handled in the primary handler or whether addi-
tional processing must be deferred to the secondary handler,

If the primary handler can complete the exception processing, it does so and then restores the saved GPRs and status before reenabling
exception recognition by executing the RFE instruction. Prior to completion it will reset ils associated exception source bit.

It the primary handler cannot complete the exception processing, 1t will copv the necessary state to a structure associated with its secondary
handler, and set the bit associated with the secondary handler by writing to the exception set register. Alter restoring saved GPRs and status
and resetbing 1ts source bat, it reenables exception recognmition by executing the RFE mstruction. The highest-prionty exception source will
subsequently be recognized and begin exception processing. This may be the secondary handler just scheduled or a higher prionty hardware
or software exception handler.

We can optimize resioring GPRs by delaving this wntil all secondary handlers have completed and no further exceptions are preseni. The
deferred GPR restore can be accomplished by sefting a software exception for the “return to user mode™ handier. It remains io be seen

whether this is generally advaniageous for performance.

The 1mitial part of the software vectoring of a secondary handler 1s the same as a primary handler. After the handler branches to the specitic
secondary handler code, the secondary handler 1s required to perform more elaborate state saving due to the possibility of preemption by
higher-prionity sources. The first portion of the secondary handler runs with exceptions disabled.

When a secondary handler begins execution 1t nstalls a pomter to its environment structure in the privileged register SR2. I the prior value
of SR21s zero, itis not preempting another secondary handler, If the prior value 1s nonzero, 1t 1s preempting another lower-priority secondary
handler. To preempt, the current handler saves the state of the prior secondary handler by calling its suspend routine, the address of which 15
at a fixed offset within the environment The suspend routine copies the necessary state into the environment and returns. The environment
will typrcally hold only one instance of’ a given type of suspended secondary handler. This means that while exceptions can interrupt and pre-
empt secondary handlers of a different type. we don’t support reentrant handling of multiple exceptions of the same type. While 1t 15 a
strarghtlorward extension to support a per-type stack or queue of multiple exception istances, 1n most circumstances the mabihity to com-
plete exception processing prior to encountering a subsequent exception of the same type reflects an underlving svstem-design problem.

The handler 15 coded to record 1ts essential state at periodic intervals. In effect, it stores a checkpomt record of 1ts progress mn its environment
with sufficient detail to allow processing to resume in the event ol a preemption. A technigue sulficient to maintain atomicity 1s to “double
buffer™ a structure with essential information and “flip™ between the consistent and working copies with a write to an index or pointer vari-
able. Code progress can be recorded by using a state varable for a software state machine or by updating function pointers.

In contrast to a traditional stack-based svstem, which keeps activation records on a stack which must be unwound 1 a LIFO order, our dis-
patch scheme records the activation ol the handler by a bit in the exception source vector, while storing the associated saved state of
preempted handlers in handler-specihic environment structures. This ensures completion of handlers in prionty order without requinng hard-
ware support of multiple priority levels for exception recognition. It may also reduce the amount ol saved state. The handler itsell can be
coded to record the bare minimum of state to allow a resumption, rather than being forced to assume the worst case and save entire register
sets which may or may not have been altered. This 1s particularly significant for the large register sets of the DIVA PIM node.
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The “checkpoimnted™ exceptions scheme 15 much easier to debug via an interactive debugger or memory dump, since the state of each active
exception handler 1s recorded at fixed locations in a form which may be conveniently exammed as a high-level structure. This 15 1n contrast
to a preemptive stack-based record, where the states of several handlers may be distributed in their lowest-level bindings across large chunks
of stack at hughly vanable locations.

The secondary handler completes by reimitializing its checkpoint record to 1ts starting state, resetting its associated exception source word
bit, and executing an RFE.

[ no other exception 15 recognized, the lowest-prionty software exception will restore all disturbed register states and refurn 1o user mode
code.

Fach exception needs to have detailed the relevant hardware status registers and in particular the correct interpretation of FADE. This wall
require some ieration to converge on a good set of hardware exceptions.

The description of software exceptions 15 less helptul. since the details of the runtime kernel will define both the priorty and meaning of
software-mitiated secondary exceptions.
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Chapter 9 - Parcel Buffer

The communication abstraction in DIVA 15 a parcel (FARalle! Computing Flement). A parcel 1s closely related to an active message as 1t 15
a relatively hightweight communication mechanism containing a reference to a function to be invoked when the parcel 15 receved. Parcels
are distinguished from active messages i that the destination of a parcel 15 an elject i memory, not a specific processor. From a program-
mer’s view, parcels, together with the global address space supported in DIVA| provide a compromise between the ease of programming a
shared-memory system and the architectural simplicity of pure message passing. Remote operations or accesses can be accomplished
through parcel sends and recerves: apphcation programs need specifv only the address of an object, and not the processor upon which the
object resides.

The basic mechanism used in the DIVA svstem to support parcel sending/receiving from/to an application 15 a parcel butfer (or phuf). The
pbufhas a virtual as well as a physical abstraction. To the application, the pbuf locations appear as regular memory locations that are manip-
ulated through simple loads and stores. At a physical level, the pbutf'is a set of memorv-mapped registers. Each PIM node contains a pbuf
that serves as a port between the on-chip parcel imterconnect and the node. {The on-chip parcel interconnect connects node pbufs, the host
interface pbuf, and the PIM Routing Component, or PIRC.) Although the parcel buffer could be implemented as registers within the PIM
node processor, a memory-mapped mechamsm for the parcel butter allows a untform implementation for the node’s phuf as well as a host
pbuf. Henece, a pbul within the PIM chip host interface 15 memorv-mapped into the host processor’s address space to allow the host processor
to communicate with PIM nodes via the parcel mechansm.

To launch parcels, a user simply writes to appropriate fields in the pbut. To receive parcels, users mayv either use an interrupt or polling meth-
odology to know when to read parcels from the pbuf. Parcel bulfer access 1z managed by the svstem in the same fashion as any other region
of memory in the node’s local address space (refer to Chapter 10).

The physical parcel format 15 shown in Figure 21, A parcel consists of a 96-bit header and 256-bit pavload. Most of the parcel contents are

hcudcrl route | SOUTCE | eid |Lm |c|m1 object

lo-bit  lo-bit  16-bat 8-bat 8-bat 32-hit

payload arguments

256-bit

Figure 21: Physical Parcel Format and Fields

written by the user during a parcel launch; however, the system 1s responsible for generating the route, source, eid, and int fields. The rowue
lield 1s a 16-bit value that 15 used by the PiRC to direct a parcel to the correct PIM chip and node. The sowrce field 1s a 16-bit value that rep-
resents the node [D of the sender and can be used by kernel software to correct routing errors. The eid field 1s the 16-bit environment
identifier of the process that launched the parcel, and the 8-bit ind field indicates whether the parcel should generate an interrupt at the receiv-
ing pbut. The ofject field 15 a 32-but virtual address of the object to which the parcel 1s directed, and the cmd 15 an 8-bit identifier that the user
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can use to index into a table of commands for the specitied object. The 256-bit payload consists of arguments for the command task or other
data associated with the action specified by the parcel.

Data 15 writien to or read from the pbul i 256-bit increments via the WideWord Unit registers. The pbuf address space can then be viewed
ers. Although the pavload

as a set ol 2536-bit registers. Besides the header and payload registers, there are also status and configuration regis
15 the only true physical 256-bit register, each register 1s allocated 256 bits of the address space and 15 aligned to the least significant bit
boundary. For example, the 96-bit header 15 aligned to the least sigmficant 96 bits of the 256-bit register space 1t 15 allocated. At least two
register sets are needed: one tor sending and one for recerving. In additon, 1it1s desirable to have multiple address mappings (aliases) of these
sets to support different access privileges and modes, as described later. To minimize interface issues with standard CPU cache line sizes in
supporting this feature, 256 byvtes of address space are allocated for each virtual copy of a pbuf register set, with the 256 bytes distributed to
glght 256-hit registers. The 256-bvte register set space for the pbul send side 15 shown in Table 8. The pavload and header are as described

TABLE 8. Parcel Buffer Send Register Set

Address Relative to

Register Set Base Register Description Physical Size (bits) Access Privilege
00 payload 256 supervisor/user
Ox20 header 96 supervisor/limited user
(x40 status 3 supervisor/limited user
G reserved NA NA
Ox80 source l& SUpErvisor
(xAD eid l& SUpPervisor
OxC0 route cache entry 96 Supervisor
OxE0 route cache imvalidate NA SuUpervisor

in Figure 21, The status bits and route cache entry/invahdate are described in later subsections. The source and eid registers are intended to
be accessed only by the trusted supervisor kernel. Such access protection 1s accomplished through address aliases for the pbuf] as described
in the tollowing paragraphs. At PIM node boot time, the kernel writes a node 1D to the source register. This value 15 copied into the source
field of every outgomg user parcel when launched. When any new apphication 15 swapped in, the kernel should also write the application’s
e1d value into the erd register in the pbut send register set. The value of the eid register 1s copled into the eid held of every outgoing user par-
cel when launched.

The corresponding register space ltor the pbul recerve side 1s shown in Table 9.

TABLLE 9. Parcel Buffer Receive Register Set

Address Relative to
Register Set Base Register Description Physical Size (bits) Access Privilege
00 payload 256 supervisor/user
(x20 header 96 supervisor/user
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TABLE 9. Parcel Buffer Receive Register Set

Address Relative to
Register Set Base Register Deseription Physical Size (bits) Access Privilege
(x40 status 5 supervisor/limited user
Ox60 reserved NA NA
Ox80 reserved NA NA
OxAD reserved NA NA
0xC0 reserved NA NA
OxED reserved NA NA

As mentioned previously, the 256-byte pbul send and recerve register sets are multiply mapped to support a number of desired features. First,
two aliases of the send register set are desired to support different functions: one address space for non-triggering writes, one address space
for triggering writes. The distinction 1s that writes to the non-tnggernng address space simply enter new data into the send register set but do
not cause a parcel launch. In contrast, a write to a register within the tniggening address space not onlv causes new data to be written into the
specified register but also initiates a parcel launch, which results in the parcel contents of the pbuf being forwarded to the FIRC. The provi-
ston of triggering and non-triggering spaces supports several nice capabilities but 1s also necessary for restoration of the pbul state upon
context switches. With this support, 1t 15 not necessary to write both the header and payload to launch a parcel. For instance, it a multicasting
operation 1s desired, 1t 15 only necessary to write the pavload once to the non-triggering address and then trigger a parcel to each destination
of the multicast by writing the appropriate header to the triggering address for each destination object. Sumlarly, 1f it 15 desired to send mul-
tiple parcel payloads to the same object, only the pavload need be written to the triggernng address for each send once the header has been
imtialized.

Similarly, there are two ahases ol the recerve register set: one space for non-destructive reads, one space for destructive reads. The non-
destructive read merely reads from the pbuf location but does not cause the data to be removed from the pbuf. The destructive read also
returns the specilied payload or header register contents, but it also causes the status of the recerve register set to be marked empty so that any
parcel waiting at the PIRC may then be forwarded to the pbuf’ In a sense, the parcel that 1s read from the destructive read address 15 then
removed trom the phut.

There are other capabilities that are also desired that are accomplished through even more ahases of the pbul hardware. For mstance, it 15
useful for a process that 15 launching a parcel to be able to specity whether that parcel should generate an interrupt when 1t arrives at 11s des-
tination node. By using another set ol aliases for this function, one address bit can be decoded to determing 1f the parcel should generate an
interrupt once it arnves at a destination pbut’ The system should set up the address translation umit appropriately to grant or revoke such priv-
ileges from users. Any write to a sending header register address, whether 1t 1s triggering or non-triggering, updates the ins field of the current
pbuf header. If the svstem or user writes to the pbuf header field at the interrupting address, the i field of the parcel gets set to indicate the
parcel 1s to generate an interrupt at the receving pbuf’ otherwise, the int held indicates no interrupt.

Additionally, it 1s desired that the supervisor be able to expheitly write the bats that are to be contained i an outgoing parcel. A user has no
control over the route, source, eid, and int fields; these helds are generated by mechanisms set up by the supervisor kernel. However, the
supervisor should be able to circumvent such mechanisms to write to these fields directlv. To implement such a capability, another set of
aliases 15 used. It 1s assumed that kernel software sets up the address translation tables appropriately so that only the supervisor may access
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the pbut hardware at the supervisor addresses. In additton to the ability of the supervisor to write bits explicitly into an outzoing parcel. there
are parts ol the pbuf hardware that are intended to be accessible only 1o a trusted supervisor, as indicated m Table 8 and Table 9. For example,
some of the status bits should only change state when accessed by the supervisor kernel (refer to the subsection on status bits). The supervi-
sor aliases of the pbuf hardware accomplish this task as well.

Combining support for triggernng/non-triggering writes, destructive/non-destructive reads, imterrupt specification, and supervisor/user capa-

bility, & aliases are used for each of the pbut send and recerve register sets, as shown in Table 10, The total address space required to support

TABLE 10. Address Mapping of Phuf Aliases

Alias Address Relative to Type of Write (send)
Phuf Base Register Set Type or Read (receive) Mareel Type Access Level
Ox000 send non-triggering interrupting user
Ox 100 send triggering
0200 receive non-destructive NA
(300 receive destructive
s 00 send non-triggering non-interrupting
0300 send triggering

(600 receive non-destructive NA

OxX700 receive destructive

(U800 send non-triggering explicitly speci- SUPEIvISor
{x900 send triggering fied

OxAD0 receive non-destructive NA

OxBO0 receive destructive

this pbuf functionality 15 3 Kbvtes. Recall that there need be only one set of parcel bufter hardware for send and receive functions: the mul-
tiple address mappings exist only to use address bits to impart information to the pbuf control hardware. By using address bits to control such
features, access privileges to the pbuf hardware can be granted or revoked by the supervisor kernel by normal management of the address
translation unit. Many of the register aliases are not needed to support some of this functionality; for example. a copy of the recerve register
set Tor the interrupting/non-mterrupting launching capabihty 15 unnecessary. However. to accommodate protection through the segmented
memory management scheme, 1t 15 necessary for the ahas sets to be arranged as shown in Table 10,

The pbul send and recerve hardware mamtain a handful of bits to indicate the state of the pbuf’ The three status bits associated with the send
side are shown in Figure 22, (Note this 3-bit status register 1s ahgned to bit positions 253 - 255 of the status register address space within the
send register set. ) The bufter empiy it indicates when 1t 15 possible for a parcel to be written into the pbut. When this it 1s set, the butfer 1s
empty and a new parcel may be written to it The bit 1s reset indicating the butfer is full when an application (user or supervisor) writes to a
triggering address to launch a parcel. It 15 then once again set when the parcel transits out of the pbul to the PIRC or host pbut. This status bit
can be used to support a “sate mode™ for sending parcels. Before writing a new parcel to the pbuf, an application can check this bit to ensure
the pbut 1s available, 1.e., the last parcel written to 1t has exited.
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The overrun bit 15 used to indicate that an apphcation has attempted to write a new parcel to the pbull although the pbufis not empty. This
bit 15 a sticky error bit. [t gets set when an overrun occurs and 15 reset only when the status bits are read. Since 1t 15 combined with other status
bits, 1t 15 important that anyvtime the send status 1s read. the state of the overrun bit should be checked 1f applications are not using the sale
mode to send parcels. User writes to the pbut send registers are ignored if the overrun bit 15 set. The apphcation must clear the overrun error
to resume launching parcels. This bit mav also be set by a write to anv send status register address contained 1n a supervisor mapping of the
pbuf’ This capability 1s needed to restore the state of the pbuf upon context switch,

The route error bit indicates that the svstem does not have suflicient information to translate an object address to a route. When an applica-
tion writes to the triggering address of a send register to launch a parcel. a certamn amount of svstem processing is applied to the parcel before
it 1s forwarded to the PIRC or host pbut. One of the fasks 15 the generation of a route from the object address. More information about this
translation 1s given in the last section of this chapter. I the pbut hardware cannot automatically generate this route, the route error bit 1s se
causing an exception. This bit 15 reset when the supervisor reads the status register from a designated supervisor ahas for the pbut. When a

01112

L— buffer empty
overrun
route error

Figure 22: Pbuf Send Status Bits
route error occurs, the buffer empty bit s re-asserted, even though the parcel has not exited the pbul. This allows the supervisor to read the
contents of the pbut, construct the proper route i possible, and then re-launch the parcel on behalt of the user without incurring an overrun
EITOr.

The five status bits associated with the pbuf receive register set are shown i Figure 23, i Note this 3-bit status register 15 aligned to bit posi-
tions 251 - 255 of the status register address space within the recerve register set. ) The bulfer full bit indicates that a parcel has been loaded
into the pbul register set from the PIRC or host pbut and 15 available for reading. This bat 1s set when the PIRC or host pbut forwards data to
the node phuf and 15 reset when an application performs a destructive read by reading from the appropriate pbut alias. When the bit 15 reset,
1t serves as a signal to the PIRC or host pbuf that the next parcel destined for this pbuf may be forwarded. If an apphcation performs a read
(destructive or non-destructive) when the buffer 1s empty, all Os are returned and the underrun status bit1s set. Simular to the send overrun bit,
the recerve underrun bit 1s also sticky and remains set until the user reads the status register.

Loftf2]s]4]

L— buffer full
——— underrun
interrupt
blocking

eid mismatch

Figure 23: Pbuf Receive Status Bits
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The interrupt, blocking, and eid mismatch bits all generate exceptions when set and remain set untl the supervisor reads the status register
Irom a designated supervisor pbul alias, The interrupt bit 15 set when a parcel that has its interrupt field set arnves to the receive registers.
The blocking bit 15 set when the PIRC or host pbul s attempting to forward a parcel to the recerve registers but cannot do so because the
recelve registers still contain the previous parcel for an extended period of time. A buried 10-bit timeout counter 15 associated with this func-
tion. The counter starts incrementing anviime the pbul receive buller s full and a request for parcel forwarding from the PIRC or host pbuf
occurs, 11 the counter reaches its maximum value, the blocking bit 1s set. 1 the parcel 1s destructively read before the counter expires, then the
counter 1s stopped and cleared, and no blocking is recorded. The eid mismatch bit 1s set when the eid held of the parcel in the receive regis-
ters does not match the pbuf eid register contents when a user read 15 attempted on any of the pbuf receive registers, including the status
registers. In such a case, the buffer full status bit should also be masked when the status 1s delivered to the reading process. The concept 15
that a wser application should view the pbuf recerve registers as empty i the parcel contained in them is for a different application, as indi-
cated by the eid values. However, the supervisor should always be able to read the pbul contents without encountering any eid mismatch
error, regardless of the eid values in the parcel and pbul configuration. Therefore, eid checking does not applyv to supervisor reads from the
phuf’

As described in the previous section there are a number of pbul events that mav cause exceptions. The pbuf receive events that cause an
exception are indicated by the interrupt, blocking, and eid mismatch status bits. These bits are simply ORed together to set bit 5 of the Excep-
tion Source Word (ESW) of the DIVA processor (refer to Chapter 8). When the kernel 1= invoked by this exception, the kernel must first read
the pbuf receive status register to determine which type ol event caused the exception and then take approprate measures to respond to the
exception. Similarly, a pbuf send event that causes an exception 18 indicated by the route error bit. When set, this status bit also causes bit 6
of the ESW to be set. Since this 1s the only send event that may cause an error, the kernel does not need to perform any extra decoding; how-
ever, It will sull need to read the send status register to clear the route error bit.

The architecture allows for hardware support to facilitate the generation of routes from object addresses. The most flexible mechamism tor
supporting this capability 15 a route cache which simply contams mappings from objects to routes. The supervisor kernel manages entering,
placement, replacement. and ivalidation of all entries explicitly. The torm of a route cache entry 15 shown in Figure 24, (Note that the 96-
bit entry 15 aligned to bits 160 - 255 of the route cache register space. ) The supervisor makes such an entry into the route cache by simply
writing the required data to the route cache entry register space of the pbuf Simce this space 1s designated for supervisor access only, the

| index | route | mask | object address |

lo-bat  [6-bit 32-bit 32-bit

Figure 24: Route Cache Entry Format

supervisor pbuf ahas address must be used to accomplish a successtul entry. The 16-bit index specifies which location of the route cache to
store the entry: in this manner, the supervisor exphicitly manages placement and replacement activity. Although 16 bits are shown for the
index, a smaller number of bits may actually be used in specific implementations of this architecture. For instance, 1f the route cache allows
for only 16 entries, only the 4 least significant bits of the index field are used.

For implementations which support a route cache, when a parcel 15 launched. the cache 15 searched tor the object address specified in the par-
cel. The mask field of a valid route cache entry indicates which bits of the corresponding obyject address should be compared to the parcel
object address to determine a successtul match. An equation specitying a mateh M where parod 15 the parcel object address and reob 15 the
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route cache object address 1s given by M (mask ~ (reohy @ paroby )1 v (mask | A (reob ) @ parob 1) v v (masky; A (reoby, @ paroby )0 11 a
match is found, the corresponding route 1s written into the route field of the parcel. The hardware does not protect against matches on multi-
ple entries in the route cache, 1e., system software must set up the route cache appropriately so that only one entry will match any given
object address. The route cache behavior 15 undefined 1f multiple entries match, The maitch does not actually have to include the Tull 32-bit
address. Since the smallest allowable segment from the perspective ofa DIVA PIM processor 1s 256 bytes, the match can be performed using
the most significant 24 bits of the parcel object address and route cache object address and mask.

The route cache contains buried valid state bits---one for each entry. These valid bits are negated upon reset and any time a route cache nval-
idate 15 executed. A vahd bit for a particular entry 15 set when the index corresponding to that entry 15 written to. For the supervisor to be able
to manage the route bufter between multitasking user processes, supervisor-controlled invalidation is provided via an address-mapped mech-
amism, similar to other pbuf funchions. Anviime the supervisor writes to the route cache mvalidation address {oflset OxED), the entire route
cache 15 invahdated. For this mechanism, the data contamed in the write 15 irrelevant since 1t 1s not used in any meaningtul manner.

The contents of the route cache mav be read for debugging purposes. An internal address counter 1s maintamed to provide this capabilify.
Upon reset, this counter poimnts to index U of the route cache. Upon each read from the route cache entry address (offset 0xC0), data corre-
sponding to the indexed entry indicated by the current contents of the counter are returned, and the counter increments to point to the next
data. The counter value representing the index and the valid bit status are also returned for the entry. The format of the 97-bit data returned
upon such a read 15 shown in Figure 25 (Note that the 97-bit data 15 aligned to bits 159 - 255 of the node data bus.)

|\| index | route | mask | object address |

[6-bit  16-bit 32-bit 32-bit

Figure 25: Data Format for Route Cache Read

In hieu ot any such hardware or 1f the cache does not contain a translation for the object of' a parcel to be launched, a route exception occurs
and the kernel must exphicitly set up the route field of the parcel by using the supervisor alias addresses tor the pbul. As part of the exception
handling, the kernel may wish to make an entry into the route cache for the object address segment which caused the exception to prevent
further exceptions due to that segment. IFa specific implementation of the pbuf architecture does not contain hardware support for route gen-
eration, parcel launching will always invoke the supervisor kernel to generate the route.
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Chapter 10 - Address Translation

Parcels, application code, and data contain virtual addresses. To interpret these addresses, a PIM processor must support a translation mech-
anism. However, the overhead of maintaiming conventional page tables at each node 1s prohibitive. To simplify translation, we classify DIVA
memory according to usage:

® clobal memory 1s composed of contiguous segments distributed across nodes, visible to applications running on the host and PIM
nodes.

® wndh memaory 1s a region of a node’s memory allocated as conventional pages in a host application’s virtual space and untouched
by PIM node processing.

® [ocal memory 15 a region of a node’s memory used exclusively by node routines. This rule is excepted during imitialization when
the host svstem boot process loads node software.
A node must be able to rapidly determine 1f an address is located in its own memory, and i’ so, find the physical address. To condense trans-
lation information, we use segments, each of which 1s defined by segment registers containing a base address and size. The local memory
region 1s partitioned into eight segments in the imtial DIVA architecture, although this number could change m future DIVA architectures.
Like pages in a conventional system, the segment descriptors are generic in nature. It 15 only through system programming that the segments
serve a specific purpose. For example, a logical allocation of the eight segments would be to assign one segment for each of the following:

1. Kernel code
2. Kernel data

Kernel stack

Lad

4. Kernel parcel bufter

Lh

Lser code
6. User data

-
o

Lser stack

8. User parcel buffer

Remote addresses are translated via the concept of a home node, which 1s guaranteed to have the translation. In addition to the local seg-
ments, a node maitains translation information for 1ts resident portion of the global memory. as well as for any remote data for which it 1s
the home node. The major advantages of this approach are that translation may be accomplished rapidly, and translation information on each
PIM scales well.

The primary functions of the node address translation umt are to translate virtual addresses to phvsical addresses tor those accesses which are
locally resident and to provide access protection. The tvpes of accesses generated by a DIVA PIM processor that require translation include
instruction fetches and data accesses to memory or memorv-mapped devices such as parcel buflers, generated by load or store instructions,
Citven the simplicity of the address translation scheme discussed above, very little hardware support 1s needed to effect efficient translation.
A segment base address register and lhimit register 15 needed for each of the eight local segments. Also, one virtual base, limit, and physical
base register are needed tor each resident global segment. The mmithial DIVA architecture provides four sets of global segment registers,
although alternative architectures could provide more. The address translation unit contains no direct support for home node translation,
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although the preferred syvstem programming 15 such that the global segments resident on a node form the portion of zlobal memory for which
that node 15 the home node. ['this 15 not the case, address faults invoke system software which performs the home node translation.

The DIVA PIM processor provides 4 Gbyvtes of virtual address space accessible to kernel and user applications via segments that are a power
of 2 In size. Segment sizes can range from 256 bytes to the maximum amount of physical memory available to a node. The initial DIVA
architecture supports a maximum segment size of 16 MBytes. Each virtual address generated by the PIM processor 1s 32 hits wide, and the
resulting phvsical address generated by the address translation unit 15 also 32 bits wide, although implementations mayv reduce this width to
optimize for the actual amount of physical memory present.

The PIM processor address translation unit supports three main tvpes of address translation:

® direct address translation
® [ocal address translation
® alobal address translation

virtual address (va)

0 4 5 31
scope |
va0:3] = 0000 address translation disabled
scope = 00000 OR scope = 00001
x l ¥
}:'ll\]flill translation local translation direct translation
0 31

physical address

Figure 26: Address Translation Types

Figure 26 shows the three main address translation mechanisms provided. When the address translation unit 1s disabled, direct address trans-
lation occurs, and the address translation umt will not generate any exceptions. In this case, the resulting physical address 15 1dentical to the
virtual address. [faddress translation 1s enabled, then the scope held of the virtual address must be inspected to deternmine what type of trans-
lation should be used. In the mitial DIVA architecture, the scope field is the most significant five bits of the virtual address VA If this 5-bit
value 1s zero, then local translation 15 used. If the scope field equals binary value 00001, 1.e.. the virtual address falls in the range of
Ox08000000 to OxUFFFFFFY, direct translation 1s used to generate the physical address; however, unlhike the mode where address translation
enerated n this case 1l access privileges are violated. By delimition, the address region OxUS000000 o

15 disabled, an exception can be g
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UxDFFFFFFE 15 a supervisor-level region. Therefore, any user-level attempt to access this region while address translation 15 enabled will
0, then global transla-

trigger an exception. Lastly, if any of the four most significant bits of the virtual address are non-zero, 1.¢., va|0:3] !
tion 15 used.

Figure 27 shows the steps involved in local address translation. The 3-bit index field of the virtual address 15 used to select a set of local seg-
ment registers for the translation. The segment base 15 simply bitwise-ORed with the zero-padded offset of the virtual address to torm the
physical address. The specitied segment it register 1s also accessed and manmipulated in conjunction with the offset to determine 1f the vir-
tual address 1s valid. More information on protection 1s given in the next section.

virtual address (va)

] 45 78 31
‘ 00000 |i|'|LlL".‘\i oflset
Segment 0 base limit VPR
— . -
. -
. ]
Segment 7 | |
exception
p checking
] - 31

physical address

Fiscure 27: Local Address Translation

Frgure 28 shows the steps involved in global address translation, which is a reverse address translation stvle. In this case, the address 15
checked to see 1 1t 15 mapped locally by simply ensuring that the address 15 within the range specified by a vahd set of the global segment

base address and himit registers. The hardware does not protect against overlapping global segments, 1e.. svstem soltware must set up the
alobal segment registers appropriately so that any global virtual address 1s contained in at most one global segment. The multiple sets of glo-
bal segment registers are checked concurrently to see 1f any one of them should be used for the translation, similar to a fully associative
cache. If there 15 no match, a translation exception occurs. More detail on this matching and protection checking 15 given in the next section.
[I'there 15 a match, the virtual address 15 simply translated into a phvsical address by a bitwise-OR of an offset with the global segment phys-
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ical base register of the matchig global segment. The offset 1s formed by using the limit register of the matching segment to mask oft the
appropriate part of the virtual address,

virtual address (va)

0 45 31
|scnpc : 0000.\" |
r r, - —_—
I I L I
| physical base | virtual base | limit |‘~| PR
\ A match/'select
exceplion/ offsetl—pm FException
masking logic
oliset
0 31
physical address
Figure 28: Global Address Translation
Memory Access In addition to the translation of virtual addresses to physical addresses, the address translation unit provides access protection and bounds
A [N I F
Protection checking to ensure that the offset portion of an address is not outside the range of the segment. The 2 PR bits of a segment himit register spec-

iy the access protection mode for that segment. Table 11 shows the possible access modes and their corresponding encodings,

TABLE 11. Segment Access Modes and Corresponding PR Bit Encodings

Encoding of PR Bits | Supervisor Privilege User Privilege
00 W (read-write) R
o1 RW RO {read only)
10 R none
11 RO none

Each local segment limit register consists of a limit value, a vahd bit, and the two PR bits. The first level of protection for local addresses 15
provided by ensuring that a valid set of segment registers 15 used, [ the V bit of the selected local segment 15 not asserted, an unmapped
access exception occurs (refer to Chapter 8). The second level of protection is provided by the PR bits. [f the PIM processor mode (supervi-
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sor or user) and access type (read or write) are not allowed by the PR bit setting of the selected segment, an invahid access excepltion occurs
(refer to Chapter 8). The hnal level of protection for local addresses 15 provided with bounds checking. The it value of the specified seg-
ment 15 used to inspect bits in the virtual address offset to ensure that the offset has not exceeded the segment size. It the segment size 15
exceeded, an unmapped access excephion occurs (refer to Chapter 8). Assuming the it value has been set accordig to the Implications
section at the end of this chapter, an equation specitying the exception condition E 15

E = (vag » limit[index]g) v (vag ~ hmitlindex]g) v ... v (vagg A limitindex]y4)

Although the conditions for address translation exceptions for global virtual addresses are similar to that of local addresses, the mechanism
15 quite different due to the fully associative nature of the global segment hardware. Basically, if one of the four sets of global segment reg-
isters does not “match™ an attempted global address access, an exception occurs. A successful match occurs when a set of segment registers
15 valid, the PR bit setting allows the access type being attempted, and the address range specified by the global virtual base and limit encom-
passes the global address of the operation. An equation specifving the range match condition RM, where va 1s the virtual address and base 15
the contents of the global virtual base register, 152
RM lm a (vay @ baseg)) v lm A (vay @base, )) v .o imity, A (vay; @ base,;))

Anunmapped access exception 1s triggered if there 15 no vahd set of registers that pass the range match test. [ there 15 a vahd set of registers
that passes the range match test, but the PR bits for that segment do not allow the attempted access, an invahd access exception occurs (refer
to Chapter 8).

The primary mstruction supported by the DIVA mstruction set which aftects address translation operation 1s the MTATR (move to address
translation register) instruction. The destination field of this instruction can be set to specily any local base register, local protection register,
global physical base register, global Timit register, or global physical base register. Since the contents of a GPR 1s the data source for an
MTATR instruction, each of these address translation unit registers 15 defined to be 32 buts wide, although implementations may truncate
some segment registers to optimize for the actual amount of physical memory present. Furthermore, each limit register 1s a concatenation of
a limit value, a valid bit, and the two PR bits. The MTPR instruction 1s also used to enable/disable address translation by writing to the appro-
priate bit of the PSW register.

There are a number of stipulations implied for the address translation mechamsms described in this chapter to operate correctly. First, every
segment size must be a power of 2, and the base address for each segment must be aligned to a value that 1s a multiple of the segment size.
Also, the hmit value must be set so that simple logie functions can be used for translation and protection checking. For example, a segment

P Il . . . H - . . o~ o
size 0f 27 should have a limit register value that 1= (27 = 10, Finallv, the virtual to physical translation for code segments must not affect the
12 least sigmiicant bits so that instruction cache look-ups can proceed concurrently with translation. While stipulating that code segment
base addresses must be some muluple of 4kbtyes 15 sulficient, it i1s not necessary, and less strict policies can be used to ensure the require-
ment is met.

The exception portion of the architecture assumes that instruction and data address translations are independent. Thus, the PSW contains two
address translation enable bits (one for instruction addresses and one for data addresses). Likewise, the exception source word contains sep-
arate status bits for instruction and data translation exceptions (refer to Chapter 8). There are also implications for better performance. For
gxample. to allow address translation tor both instruction fetches and data fetches to proceed concurrently, the address translation hardware
must be dual-ported.
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Abstract

The ever growing speed gap between processor and main memory has been a major
performance bottleneck of modern computer systems. As a result, today’s data intensive
applications suffer from frequent cache misses and lose many CPU cycles due to pipeline
stalling.  Although traditional prefetching methods reduce cache misses considerably,
most of them strongly depend on the access pattern bemng predicted and fail when faced
with 1rregular memory access patterns with low locality.

This report presents our design and performance evaluation of a novel, high-
performance decoupled architecture called HiDISC (Hierarchical Decoupled Instruction
Stream Computer).  HiDISC provides low memory access latency by introducing
enhanced data prefetching techniques at both hardware and software levels. Three
dedicated processors for each level of the memory hierarchy act in concert to mask the
memory latency.

As required by the DARPA Data Intensive program, we used as our performance
evaluation benchmarks the Data-intensive Systems Benchmark Suite and the DIS
Stressmark suite. The simulation results for both benchmarks show a distinet advantage

of the HIDISC system over current prevailing superscalar architectures.
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1. Introduction

The speed mismatch between processor and main memory has been a major performance
bottlencck m modern processor architectures. Processor speed has been improving at a
rate of 60% per year during the last decade. Conversely, access latency to main memory
has been improving at less than 10% per year [24]. This speed mismatch — the Memory
Wall problem - results in considerable cost in terms of cache misses and severely
degrades processor performance. The problem becomes even more acute when faced
with highly data mtensive applications. Indeed, these applications are becoming more
prevalent. By defmnition. they have a higher memory access/computation ratio than
“conventional™ applications. Moreover, the access pattern tends to be more irregular. As
a result, the penalty caused by cache misses 1s becoming even more serious. This means
that the architect must either reduce pipeline stalling upon cache misses or reduce the
number of those cache misses (mcidentally, this latter objective 1s the mam goal of the

HiDISC project).

e (=]
HProc
By
L gy CT LT LT rTS [
Processor-Memory
PeEoma e Gap:
(Qrows S0% ! year)
LT T T T LT T T ErT T
DRAM
THAT. v
ORAM
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Figure 1: The speed mismatch between CPU cycle and DRAM speed

Reaching higher Instruction-Level Parallelism (ILP) through multiple mstruction
1ssue and out-of-order execution has been an essential part of modern processor design
for many vyears. Moreover, sophisticated branch prediction and speculative execution
techniques provide more opportunities for the discovery of independent instructions
across basic blocks [31]. Various approaches using Thread-Level Parallelism (TLP) have

also been ntroduced to deliver more ILP. During the last decade, superscalar and very
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long mstruction word (VLIW) architectures have played an mmportant role in ILP
rescarch.  Although both models are designed to deliver higher levels of parallelism
through multiple instruction issue, the ever increasing memory access latency has become
a major obstacle to the exploitation of higher degrees of 1LP.

To solve the memory wall problem, current high performance processors are
designed with large amounts of integrated on-chip cache. However, this large cache
strategy works efficiently only for applications which exhibit sufficient temporal or
spatial locality. Newer applications such as multi-media processing. database, embedded
processor, automatic target recognition, and any other data intensive programs exhibit
irregular memory access patterns [15] and result in considerable numbers of cache misses
which cause significant performance degradation.

To reduce the occurrence of cache misses, various prefetching methods have been
developed. Prefetching 1s a mechanism by which data 1s fetched from memory to cache
before 1t 1s even requested by the CPU. It can be implemented either n hardware or in
software. Hardware prefetching [6] dynamically adapts to the runtime memory access
behavior and decides the next cache block to prefetch. Software prefetching [20] usually
mserts the prefetching mstructions inside the code. Although previous prefetching
research considerably contributed to improvements in cache performance, prefetching
techniques still suffer from rregular memory access patterns. Indeed. typical prefetching
strategies strongly depend on the predictability of the future data addresses. This 1s very
difficult to predict when the access patterns are random [19]. Moreover, many current
applications use sophisticated data structures with pointers which dramatically lower the
regularity of memory accesses.

The Data Intensive Systems Benchmark Suite and the DIS Stressmark Suite are
used i this project as our performance evaluation benchmarks. Both benchmarks are
provided by Atlantic Acrospace Electronics Corporation [38][39] and supported by the
Data Intensive Systems project of the DARPA  Information Technology Office.

Stressmark includes seven small data mtensive benchmarks. Conversely, the DIS
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benchmarks consist of five codes more realistic than Stressmark. The five benchmarks

can be categorized into three groups:

. The Model based image generation group has two benchmarks — Method of

Moments and Simulated SAR Ray Tracing.

2. The Target detection ncludes Image Understanding and Multidimensional

Fourier Transtorm.

T

The Data Management benchmark

2. Method, Assumptions, and Procedures

In order to counter the inherently low locality in Data Intensive applications, our design
philosophy 1s to emphasize the importance of memory-related circuitry and even employ
two dedicated processors to respectively manage the memory hierarchy and prefect the

data stream.
2.1  The HiDISC System

Access/Execute decoupled architectures have been developed as alternate processor
architectures which exploit the parallelism between data access operations and “normal™
computation. Concurrency 1s achieved by separating the original, single instruction
stream into two streams based on the functionality of instructions.  Asynchronous
operation of the streams provides for a certain distance between the streams and makes
data prefetching possible.  The HiDISC architecture 1s an enhanced variation of
conventional decoupled architectures.

Decoupled architectures {also called Access/Execute architectures) deliver higher
degrees of Instruction-Level Parallelism by separating the sequential code into two
mstruction streams - Access Stream and Execute Stream - based on memory access
functionality. Each stream runs almost independently of the other. The model was
originally developed to tolerate long memory latencies: hopefully, the Access Stream will

run ahead of the Execute Stream in an asynchronous manner, thereby allowing timely
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prefetching. It should be noted at this point that an extremely important parameter will
be the “distance™ between the instruction currently producing a data element in the
Access Stream and the mstruction which uses 1t in the Execute Stream. This 1s also
called the slip distance, and it will be shown how it is a measure of tolerance to high
memory latencies.  Communication is achieved via a set of FIFO queues (they are
architectural queues between the two processors to guarantee the correctness of program
flow).

Our HiDISC (Hierarchical Decoupled Instruction Stream Computer) architecture
1s a variation of the traditional decoupled architecture model. In addition to the two
processors of the original design, the HiDISC comprises one more processor for data
prefetching [6][8] (Figure 2). A dedicated processor for each level of the memory
hierarchy timely supplies the necessary data for the above processor. Thus, three
individual processors are combined n this high-performance decoupled architecture.

They are used respectively for computing, memory access, and cache management:

ALLT Instructions

Program =i Compiler i i
Load Store [nstructions

Cache Management
Progassor (CMIP)

Cache Mpmt. Istructions

Figure 2: The HiDISC System

o Computation Processor (CP): executes all primary computations except for

memaory access Instructions.

* Access Processor (AP): performs basic memory access operations such as

loads and stores. It is responsible for passing data from the cache to the CP.
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e (Cache Management Processor (CMP): keeps the cache supplied with data
which will be soon used by the AP and reduces the cache misses, which

would otherwise severely degrade the data preloading capability of the AP.

By allocating additional processors to each level of the memory hierarchy, the
overhead of generating addresses, accessing memory, and prefetching is removed from
the task of the CP: the processors are decoupled and work relatively independently of one

another.

CompMation
o

Store Data

Slip Control Quene

Queue

L1 Cache

Cache Mg

and Higher Level

Figure 3: Inside the HiDISC architecture

Now, our compiler must appropriately form three streams from the original
program: the computing stream. the memory access stream, and the cache management
stream are created by the HIDISC compiler and stored into the program memory of cach
of the processors. As an example, Figure 4 shows the stream separation for the inner
loop of the discrete convolution algorithm.

The control tflow mstructions are executed by the AP. Incidentally, it should be
noted that additional instructions are required m order to facilitate the synchronization
between the processors. Also, the AP and the CP use specially designed tokens to ensure

correct control flow: for instance, when the AP terminates a loop operation, it simply
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deposits the End-Of-Data (EOD) token into the load data queue. When the CP sees an

EOD token in the load data queue, 1t exits the loop.

Computution Procesor Code

_ }
sand (0D triken)

Inner Loop Convolution send address ofy[i] ba SAQ

Access rocessor Code

SALE Bore Adidress Quene .
S13: Sore Daia Quens for (= 0§ =1, 4400 4

SCC) Slip Contral Queue prefeichixj]};

ECD: Erd of D b ﬁ%"g':g'*'l]‘

Cuche Munogement Code

Figure 4: Discrete Convolution as processed by the HiDISC Compiler

2.2 Experimental Environment

In order to evaluate the performance of our proposed architecture, we have designed a
simulator for our HiDISC architecture. It 1s based on the SimpleScalar 3.0 tool set [5]
and 1t 1s an execution-based simulator which describes the architecture at a level as low
as the pipeline states in order to accurately calculate the various architectural delays.
Figure 5 shows a high-level block diagram of the simulation procedure. Each
benchmark program follows the two steps described. The first step consists in compiling
the target benchmark using the HiDISC compiler which we have designed, while the

second step 1s the simulation and performance evaluation phase.
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Simulatar
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HilISC execwtable

HiDISC Compiler Simulation and
Performance Evaluation

Figure 5: Simulation Procedure

2.3 Operation of the HiDISC Compiler

The HiDISC executables are produced by our HiIDISC compiler. The core operation of
the HIDISC compiler 1s stream separation. Stream separation 1s achieved by backward
chasing of load/store instructions based on the register dependencies. This means that, in
order to obtain the register dependencies between nstructions, a Program Flow Graph
(PFG) must be derived. Indeed, the PFG generator and the stream separator are two
major operations of the HIDISC compiler. The PFG generator and the stream separator
are adopted after some modifications from the SimpleScalar 3.0 tool set and mtegrated in
the HIDISC compiler.

Figure 6 depicts the overall HIDISC compiler. Its detailed operation 1= described

below.
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2: Diefining Lond Store
Instructions

Compu talion
Cocle

Figure 6: Overall HiDISC stream separator

The mput to the HIDISC compiler 1s a conventional sequential binary code. The
first step (1: Deriving the Program Flow Graph in Figure 6) consists in uncovering the
data dependencies between the instructions. Each instruction i1s analyzed so as to
determine which its parent instructions are. This determination is based on the source
register names. Whenever the stream separator meets any load/store instruction in step 2
(2: Defining Load/Store Instructions), 1t defines the instruction as the Access Stream
{AS) and chases backward to discover its parents instruction. The next step (3:
Instruction Chasing for Backward Slice) 1s designed to handle the backward chasing of
pointers. The instructions which are chased according to the data dependencies are called
the hackward slice of the instruction from which we started.

Since the Access Stream should contain all access-related mstructions, as well as
the address calculation and index generation mstructions, the backward shice should be
included in the Access Stream as well. It should be noted that all the control-related
mstructions are also part of the Access Stream. The mstructions which should belong to
the control flow are determined by a similar method.  After defining all the Access
Stream, the remaining instructions are. by default. classified as belonging to the
Computation Stream (CS).

In addition to the stream separation, appropriate communication nstructions

should be placed in each stream in order to synchronize the two streams. Finding what
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the required communications are 1s also based on the register dependencies between the
streams. Essentially, when it 1s determined that some required source data 1s produced by
the other stream, some kind of communication should take place. For instance, when a
memory load (inside the Access Stream) produces a result which should be used by the
Computation Stream, a Load mstruction would be inserted in the Access Stream. [t
would send the data to the Load Data Queue (LDQ). However, if the result of that load
was not needed by the Computation Stream, then obviously no such insertion would be
needed. Similarly. when the result produced by the Computation Stream 1s used by a
store mstruction {(inside the Access Stream), 1t should be sent to the store data queue
(SDQ) by mserting an appropriate communication mstruction.

The backward chasing starts whenever we encounter new load/store nstruction.
The backward chasing ends when the procedure meets any mstruction which already has
been defined as the Access Stream. The parent instructions of any defined Access
Stream have already been chased.

After separating the Access Stream and the Computation Stream, the CMP stream
is constructed by modifying the Access Stream.  The nstruction stream for the CMP 1s
indeed quite similar to the Access Stream. Only the load instructions are replaced with
the prefetch mstructions for the CMP stream.

Figure 7 shows an example of the operation of the backward slicing mechanism in
the HiDISC compiler. The assembly code mput to the HIDISC compiler 1s the PISA
(Portable Instruction Set Architecture) which 1s the mstruction set of the SimpleScalar
simulator [5]. We have selected for this example the ner product of Livermore loop
{(llIT). The PISA code 15 compiled into SimpleScalar binary by first using a version of
gee which targets SimpleScalar.

[nitially, each memory access nstruction 1s defined as belonging to the Ageess
Rifedie i) examRlenthtcdihionirastionindbeadifbibagitio tateHdods, anpresv el cvery
parent instruction of a memory access mstruction should be identified. In the example,

the addu instruction in the fourth line (pointed to by an arrow @)) - due to the register $9
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- and the mal instruction in the second line (pointed to by an arrow (3)) -due to the
register $25 - are also chased and marked as belonging to the AS. Likewise. other
instructions are examined based on the above approach. The mstructions in the shaded

box in Figure 7 belong to the Access Stream.

[

wlk] =g+ y{k|* cfalke L O] + el 1]

Computation Stream
3, Acress Sbream
L0 e
Py —— If]

1A LF1a 80
Commumnicate via L)

Ld S, &5

1A PR RO

Suy
£11_S718 S0

[ A T P e 1)

addu §13, 525,512
s.d S, 05130

Figure 7: Backward chasing of load/store instructions

Commmmnicate via ST

After defining cach stream, the communication mstructions should be nserted.
The red lines in Figure 7 (forward arrows, solid lines) show the necessary
communications from the AS to CS. For example, the mul.d mstruction {which 1s
marked as being inside the Computation Stream, pointed to by arrow @) in the seventh
line requires data from the other instruction stream (The Access Stream). Therefore, both
{.d mstructions n the fifth and sixth line need to send data to LDQ. Likewise, the purple
line at the bottom (forward arrow, dotted line) also shows the communication from the
CS to the AS via the Store Data Queue (SDOQ)).

Figure 8 shows the complete separation of the two streams and insertion of the

communication mstructions.
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a[k] = g+ y[k1E rEgke1a) + ke 11) k

Figure 8: Separation of sequential code

2.4  Benchmark Description

Applications causing large amounts of data traffic are often referred to as data-intensive
applications as opposed to computation intensive applications. Inherently, data-intensive
applications use the majority of the resources (time and hardware) to transport data
between the CPU and the main memory. The tendency for a higher number of
applications to become data intensive has become quite pronounced m a wvariety of
environments [39].  Indeed, many applications such as Automatic Target Recognition
{ATR) and database management show non-contiguous memory access patterns and
currently result in idle processors due to data starvation. These applications are more
stream-based and result in more cache misses due to lack of locality.

Frequent use of memory dereferencing and pointer chasing also creates an
enhanced pressure on the memory system. Pointer-based linked data structures such as
lists and trees are used in many current applications. For one thing, the mcreasing
popularity of Object Orient Programming correspondingly increases the underlying use
of pointers. Due to the serial natural of pointer processing, memory accesses become a
severe performance bottleneck of existing computer systems.  Flexible, dynamic

construction allows linked structures to grow large and difficult to cache. At the same
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time, linked data structures are traversed in a way that prevents individual accesses from
being overlapped since they are strictly dependent upon one another [26].

The applications for which our HiDISC 1s designed are obviously data intensive
programs, the performance of which is strongly affected by the memory latency.  As
required by the Data Intensive Systems project of the DARPA Information Technology
Office, we used for our benchmarks the Data-intensive Systems Benchmark Suite [39]
and DIS Stressmark Suite [38] provided by the Atlantic Aerospace Electronics
Corporation. Both of the benchmarks are targeting data intensive applications. The DIS
benchmarks are five benchmarks codes, which are more realistic and larger than
Stressmark. Stressmark includes seven small data intensive benchmarks, which extracts
and shows the kernel operation of data intensive programs.

Due to problems with the mput data file, the Image Understanding benchmark
cannot be executed. Also, since the Corner-Turn benchmark among seven Stressmarks 1s
not provided with the source code, we only simulated the other six Stressmarks.

Table 1 shows the characteristics of each of the benchmarks simulated.

Benchmark Name Problem Characteristic
Containing
computational
complexity and

Computing the
Method of electromagnetic
Moments scattering from
complex objects
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3. Results and Discussion

We used our architectural simulator of the HIDISC machine to evaluate the performance

of all the benchmarks except two.

3.1  Simulation Parameters

fow poactad ool
rotoatreTtou grapt

matrices concurrently

[n our benchmark simulations, we assumed the architectural parameters outlined in Table
2. The baseline architecture for the comparison is a 4-way superscalar architecture,
which 1s implemented as sim-outorder in the SimpleScalar 3.0 tool set. In both cases, the
memory access latency has been made to vary between 20 and 120 CPU cycles. The
baseline superscalar architecture supports out-of-order i1ssue with 16 register update units

and 8 load store queues.
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3.2  Benchmarks Results

Figure 9 and Figure 10 show the simulation results of the DIS Benchmark Suite and the
Stressmark Suite. The performance results of the HIDISC architecture are compared to a
d-way superscalar architecture. The far left bar indicates the performance results of the
superscalar architectures. The second bar expresses the performance results of the basic
HiDISC architecture. The remaiming two bars show the possible performance results
when enhancing the prefetching capability of the CMP processor.  The numbers in
parenthesis express the cache miss reduction ratio. The enhancements will be explained

in more detail in the next section.

244



il M s
=
. — =8
L] =)
“ I 2
£ - g 2
i 15
= 15
[T
o 15 . . * . .
5 . . = N o " L] 123
E L L] £ B oy L= Coacha Mss Ladency
L2 Cncre 1 Ll
[Cnmcty Sravs: Cryy Wy o | (9 Superscakar 8 e DHEsE furs) 0 HIESC by |
M
my
L3 e L e
Egr o 2o i O ey DD OHERR® W7 O HCAT |

Figure 9: DIS benchmark performance results

All four DIS benchmarks show better performance than the baseline superscalar
architecture.  However, with the Stressmark, only two of the six cases show better
performance for the HiDISC. The remaining four benchmarks do not show any

performance advantage for the HIDISC architecture.
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Figure 10: Stressmark performance results

3.3  Discussion

The simulation results show that the HiDISC system performs quite well in general with
the DIS benchmarks. This 1s because the DIS benchmarks contain many long latency
tloating-point operations which can effectively hide any long memory latency. In other
words, the amount of computation code and that of memory access code are well
balanced in the DIS benchmark Suite. Conversely, the size of the Stressmark

computation code 1s much smaller than that of the memory access code. It 1s one of the
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main reasons for the somewhat weaker performance results observed in the case of the

Stressmark Suite.

Four DIS Benchmarks Results (Figure 9)

Four DIS benchmarks outperform the baseline superscalar architecture particularly with
higher memory latencies. More particularly, the Method of Moments 1s quite robust
when faced with longer memory latencies. It contains enough computation code which
can hide the longer access latency. Also, the dependencies between the Computation
Stream and the Access Stream are comparatively not heavy and provide enough ship
distance to hide any long memory latency.

In the case of the Multidimensional Fast Fourier Transform, HiDISC also
outperforms the superscalar architecture. However, the results show a weaker
performance for long memory latencies even with the HiDISC model. Indeed. the
synchronization between the AS and the CS limits the possible slip distance between the
two streams. It 15 due to the data dependencies between the two streams: frequent data
dependencies between the Access Stream and the Computation Stream cause loss of
decoupling events. Usually, it 1s the CS which has to wait for a data element to be
produced by the AS (although the converse i1s also sometimes true). When this happens,
the slip distance between the two processors 1s reduced significantly, one processor must
wait for the other and any advantage is negated since there 15 no more parallelism
between the two processors.

The Data Management and the Ray-Tracing benchmarks are not affected by
longer memory latencies in either case. It should be noted that the working set for the
Data Management benchmark fits quite well in the cache. As should be expected, a
program with a small working set i1s not a good candidate for a prefetching architecture
such as the HIDISC. Conversely, due to the prefetching of the CMP, FFT exhibits better

performance.
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Six Stressmarks Results (Figure 10)

Generally, the Stressmark codes are too small and contain too many operations which are
concerned only with data access. Therefore, the amount of computation code to hide data
access 1s not sufficient. The HiDISC produces weaker results m four Stressmarks —
Update, Field, Matrix and Neighborhood - out of the six Stressmarks. However, the
remaining two Stressmarks - the Pointer and the Transitive Closure — advantageously
exploit the characteristics of our architecture.

Besides the unbalanced computation and access code ratio, frequent loss of
decoupling 1s another main reason for the weak performance we observe in several
Stressmarks. Indeed, four Stressmarks except Pointer and Transitive Closure contain too
much data dependencies and frequent synchronizations between two streams.

However, m the Pointer Stressmark case, pointer chasing can be executed far
ahead sice 1t does not require the computation results from the CP. The Transitive
Closure benchmark also produces good results because not much 1n the AP depends on
the results of the CP. In both cases, the Access Stream can run far ahead of the
Computation Stream: a sufficient slip distance 1s guaranteed in both benchmarks.

The slip distance is truly inherent to the mstruction mix pattern of the application:
if the Access Stream does not depend much on results from the Computation Stream, the
Access Stream can run earlier and maintamn a high shp distance. Poimnter and Transitive
Closure exhibit good performance for the same reasons. In addition to the possible slip-
distance between the two streams, the Stressmark results suggest that applications which
are 1deal for the HiDISC would be well balanced mn terms of the ratio of computation
operations over memory operations.

Finally, the working set for the Stressmark 1s quite small and the baseline
superscalar architecture does not suffer from many cache misses. Three Stressmarks
{Update, Field and Neighborhood) cannot improve even with the prefeching of the CMP.

Although some of the benchmarks show weak performance, the fact that the

Pomnter Stressmark and the Transitive Closure Stressmark perform better that the bascline
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superscalar architecture is quite encouraging and suggests the type of the candidate

applications for the HIDISC architecture.

4. Conclusions

Current high-level programming languages and all supporting compilers are based on an
underlving sequential programming behavior. This 1s confirmed at the lower level where
the instruction set of modern microprocessors are based on a sequential model. However,
in order to exploit some parallelism at the nstruction level, manufacturers of current
prevailing high performance processors have considerable changed the processor internal
structure.  Also. several features of datatflow models have found their way in modern
processor architectures and compiler technologies such as register renaming and dynamic
scheduling [17]. Decoupled architecture 1s one such technique which promises to bring
improvement to the performance.

The effectiveness of the HIDISC decoupled architecture has been demonstrated
here with data mtensive applications. It has been eloquently shown that the proposed
prefetching  method provides better [ILP compared to conventional superscalar
architectures. However, the possible lass of decoupling, which is mherited from the
sequential behavior of the programs, stalls the processors and drops utilization in some
cases. The results also pomnt to some future modifications of the current CMP for
effective prefetching.

Clearly, the HiDISC architecture, as designed. will shine when executing data
intensive applications because they contain enough computation to hide long memory
latencies.  In addition to that, the slip distance is another important factor which
determines overall performance. Too many data dependencies of the access processor on
the computation processor prevent a sufficient slip distance from developing. Therefore,

stream-like applications are favored for the HiDISC system.
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5. Recommendations

Based upon these performance results, we propose some mmprovements to the basic

HiDISC architectures in order to make 1t fit a wider variety of applications.

5.1 Future Enhancements to the HiDISC

Although the independent management of the memory hierarchy provides an opportunity
to implement novel prefetching techniques, the HiDISC architecture suffers from two
significant weaknesses. First, the frequent synchronizations between the AP and the CP
cause stalling of the processors and result in low utihzation. Second, the CMP code 1s
essentially not different from the AP code.  Therefore, all the load instructions are forced
to run on the CMP as prefetching. However, not every prefetching by the CMP is
necessary and helptul. Necessary enhancements regarding the above two problems will
follow.

The frequent synchromizations cause loss of decupling and prevent timely
prefetching. Therefore, each processor of the HiDISC loses many CPU cyeles to wait
until the necessary data arrives. To solve this problem, Simultancous MultiThreading
{(SMT) should be added to the HiDISC architecture.  SMT will raise the utilization by
running multiple threads simultancously. In other words, in a multithreaded HiDISC
system, SMT would raise the utilization of the processors, while decoupling would
]

The second modification is related to the current CMP design.  The main

e

reduce the memory latency [22]]2

motivation for the existence of the CMP processor is to reduce the cache miss rate by the
Access Processor by timely prefetching. Therefore, the CMP should run ahead of the AP,
just like the AP runs ahead of the CP. However, in the basic HiDISC design, the
instruction stream for the CMP i1s quite similar to the Access Stream, which 1s a
signiticant limitation as far as the effectiveness of the prefetching 1s concerned. Our
original design executes every load instruction on CMP. However, if the cache line

already resides in cache, those prefetches become redundant operations.
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Only future probable miss mstructions can benefit from the prefetches by the
CMP.  However, the current CMP 15 too heavy and mvolves performing too many
redundant operations. Hence. 1n order to prefetch more efficiently into the cache, we
must develop better methods so that we execute only probable miss instructions.

We define Cache Miss Access Slice (CMAS), which is a part of the Access
Stream, consisting of the probable cache miss instruction and 1ts parent instructions. The
probable cache miss mstructions can be found using the cache access profile [27][28].
The CMAS 1s executed on existing CMP in a multithreaded manner. Indeed. the CMP 15

an auxihary processor for speculative execution of probable cache miss mstructions.

5.2 Flexi-DISC

One of the most striking characteristics of the HiDISC architecture 1s 1ts inherent
flexibility and how 1t yields highly efficient execution of a large variety of loop-based
programs with little or no temporal locality. This fundamental feature is further extended
in the proposed Flexi-DISC. This new architecture will be targeted to a wide variety of
more complex, numerical and non-numerical applications (such as Automatic Target
Recognition).

While the original HiDISC is centered around three processors with well defined
roles, the Flexi-DISC maintains the three roles of the CP, the AP, and the CMP at the
kernel of its fundamental machine model but elevates it to a more sophisticated concept:
the two highest levels (Access and Cache Management) are still handling the transfer of
data between the memory system and the Computation level while the third level remains
in charge of the computation per se. This can be represented as the three concentric rings
on Figure 11: the Computation Kernel {(CK), the Low-level Cache Access Ring (LCAR),

and the Memory Interface Ring (MIR).
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Computation
i erngl

Access Ring

Memory Interface Ring

Figure 11: The three-Ring Flexi-DISC Architecture

The fundamental observation which leads to this partitioning comes from the fact
that the types of applications (Memory Intensive) we have been targeting are both varied
in nature and also inherently highly dynamic at execution time. This may mean that
memory access patterns could range from. say, single use of any data element (no
temporal locality), to multiple reuses (high temporal locality). Consequently, the
bandwidth and types of pipes to and from the memory system must adapt to the changes,
whether they be static or dynamic. We plan on centering the whole architecture around a
highly reconfigurable Computation Kernel.

The central Computation Kernel 1s based on an array of simple processors which
can be dynamically rearranged to meet the demands of the current application. It can
even be partitioned into sub-arrays which are allocated to different portions of the
application (or even to different applications as needed). Such a powerful computation
kernel requires an equally powerful “pipeline” to feed it nformation to and from the
memory system. Further, the varety of target applications makes the memory accesses
unpredictable.  This means that depending on the application (or even the phase of a
given computation), the amount of memory traffic may fluctuate, and the prefetching

mechanisms must be allowed to adapt to the situation at hand. This also means that

252



instead of allowing a single processor for the Cache Access role and another for the
Cache Management role, a pool of identical processing units must be made available to
the two roles combined. This sharing enables a highly efficient dynamic partitioning of
the resources and their run-time allocation to the two outer rings (the Low-level Cache
Access Ring, and the Memory Interface Ring).

The technology developed for the HiDISC compiler can be expanded to include
the rearrange ability of the machine, as well as the partitioning it will undergo i the

presence of multi-headed applications.

Access Ring

Memory Interface Ring

Figure 12: Multiple application sharing of the Flexi-DISC model
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Appendix A: Compiler and Simulator Description

The compiler and the simulator are based on the SimpleScalar 3.0 tool set. The two tools
have been designed by moditying sim-outorder.c. The first tool 1s sim-pfg.c, which takes
care of the whole compiling procedure and the other one 18 sim-dumas.c, which exactly

matches the HIDISC simulator. This appendix gives a detailed description of the tools.

A.l. Compiler Tool: sim-pfg.c

sim-pfg.c 1s the source code (C) for the HIDISC compiler. The main tasks of sim-pfg.c
are: 1. Dertving the Program Flow Graph and 2. Separating the streams. The mput for
sim-pfg.c 1s a binary executable for SimpleScalar while the output 1s a binary executable
for the HIDISC architecture with the separation information.

Renchmarks

Segqueniial executable

PEG
generatar
|
pendency information

¥

Stream
separator
+
HilISC executable

D

m

Figure 13: The HiDISC Compiler

Figure 13 shows the procedure inside the HiDISC compiler. The two boxes

perform the operations mentioned earlier.

Deriving Program Flow Graph (PFG)

The Program Flow Graph delivers the data dependency information between instructions.

The dataflow relationship between instructions must first be defined in order to get the
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backward slice of a certain target instruction.  After this procedure, each access related
mstruction can point to the parent instructions based on the source register name. The

main procedure 1s named pfe_const( ). Its detailled mechanism 1s deseribed in Figure 14,

Repister Table
1
1
R4
o RS
1
{18 Source Registers !
o Ri
Instruetion R
1
add BT, RE, RS b

128 Find out the PFG_station for

the parent instruction

\ £ Paints 1o parent

PFE_station Table
Figure 14: Deriving PFG Graph

The data structure for each instruction has been defined as pfe_station. After the
mstruction is decoded, a dedicated pfg_station is assigned. The first procedure consists
in accessing the register table based on the source register name. (referred to as @ in
Figure 14). The register table gives the pointer to the mstruction (actually, the pointer to
pfe_station of the instruction, referred to as @ in Figure 14 ) which last updated the
source register.  Finally, the decoded mstruction can have the pointer for the parent
instructions referred to as 31 in Figure 14,

This 1s how we uncover the parent instructions of a load/store instruction. Later,
we can proceed with a backward chasing procedure in order to extract the backward shice

based on the PFG information.
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Separating Stream

The stream separation 1s based on the register dependencies. First, when the decoded
instruction 1s either a load or a store nstruction, 1t 1s immediately assigned to the Access
Stream. After that, the backward chasing procedure 1s imitialized (procedure named
chasing_parents( ) 1s called). Essentially, it 1s function call which is recursively applied
until 1t reaches an mstruction which has been pre-determined to belong to the Access
Stream.

The PFG information from the previous step yields the pomters to the parent
mstructions.  Therefore, the chasing_parents( ) procedure basically returns all the
pointers to the parent instructions.

After the mstruction 1s detected as belonging to the Access Stream, the stream
separation information 1s updated mside the bmnary file. Since each nstruction of the
SimpleScalar binary mcludes an additional annotation field, those extra bits can be used

to carry the separation information.

AL2. Simulator: sim-dumas.c

The HiDISC simulator has been designed by modifying the sim-outorder.c module of the
SimpleScalar 3.0 tool set [5]. The major modifications consist in: 1. implementing the
three processors of the HiDISC and 2. implementing the communication mechanisms
{queues) between those three processors. As in the original SimpleScalar simulator, the
HIDISC simulator is also an execution-driven, cyele- time simulator.

To implement the three processors of the HIDISC, we basically copied three times
the pipelined RISC processor of the SimpleScalar tool set and tailored each so they would
correspond to the architecture of each HIDISC processor.

After the decoding stage, each processor has a corresponding ready list, which 1s
the instruction stream for each processor. We implement three different functional units
which are unique to each processor. Procedure ruu_issue( ) of the sim-outorder.c has

been copied and changed to ruu_issup_cp( ), ruu_issuwe_ap( ). and ruu_issue_cmp( ).
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Each function detects each ready fist and finds the available functional unit that is
assigned to the corresponding processor.

The need for communication can also be detected at the decoding stage. If an
mstruction requires data from the other processor, 1t should be blocked and 1t should wait
until the other processor sends the data.  The queue implementation is quite easily
handled using the existing link operations of the SimpleScalar tool set. All the necessary
source data 1s linked after the ruu_dispartch( ) procedure. Therefore, the sending
processor can “wake up™ the waiting processor just like rui station in sim-outorder.c.

Communications between the AP and the CMP are achieved through the data
cache. Therefore, the data cache is designed and implemented to be shared and accessed

by both processors.
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Appendix B: Raw Performance Data

This appendix contains all the simulation results.  The column denoted as miem
corresponds to the various memory latencies.  The column marked SS contains the
performance of the base line superscalar architectures. The fourth column denoted as
HiDISC contains the performance results of the HIDISC architecture without the CMP
processor. The remaining two contain the performance results with the CMP enhanced
pre-fetching algorithms.  The performance measures are all mn [PC {(instructions per

L‘.llﬂl_‘.k}.
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=< DS benchmarks =

FFET mem 59 HIDISC cmp cmp2
20 1.2 1.56 1.79 1.83
40 0.96 1.21 1.37 1.44
60 0.79 0.99 1.12 1.18
&0 0.68 0.84 0.94 1.01
100 0.59 0.72 0.81 0.87
120 0.53 0.64 0.71 0.77
MoM mem SS HIDISG cmpl Cmp2
20 2.09 2.02 2.02 2.02
40 2.06 2.02 2.02 2.02
&0 2.03 2.02 2.02 2.02
80 2.01 2.02 2.02 2.02
100 1.98 2.02 2.02 2.02
120 1.95 2.02 2.02 2.02
DM mem 535 HIDISC cmpi cmp2
20 1.3 1.47 1.47 1.48
40 1.29 1.45 1.45 1.46
G0 1.27 1.43 1.43 1.45
&0 1.25 1.41 1.42 1.43
100 1.23 1.39 1.4 1.41
120 1.22 1.38 1.38 1.4
RayTracing | mem S5 HIDISC cmpi cmp2
20 1.0981 1.4633 1.4633 1.4633
40 1.0966 1.463 1.463 1.463
&0 1.0951 1.4627 1.4628 1.4628
&0 1.0936 1.4624 1.4625 1.4625
100 1.0022 1.462 1.4623 1.4623
120 1.0907 1.4627 1.462 1.462
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< Stre

RSTATK e _
mem SS HiDISC Cmp1 cmp2
losure
= 20 1.02 0.94 0.98 0.98
40 0.63 0.91 0.98 0.95
&0 0.46 0.57 0.98 0.9
80 0.36 0.56 0.98 0.59
100 0.29 0.83 0.98 0.86
120 0.25 0.52 0.98 0.83
Pointer mem 5SS HIDISC cmpi cmp2
20 1.33 1.46 1.46 1.46
40 1.33 1.46 1.46 1.46
60 1.32 1.46 1.46 1.46
80 1.32 1.46 1.46 1.46
100 1.32 1.45 1.46 1.46
120 1.32 1.45 1.45 1.46
ﬁ:ﬁ:"m— mem SS HIDISC | emp omp2
20 1.9 1.36 1.36 1.36
40 1.9 1.36 1.36 1.36
60 1.9 1.36 1.36 1.36
80 1.9 1.36 1.36 1.36
100 1.9 1.36 1.36 1.36
120 1.9 1.36 1.36 1.36
Update meim 55 HIDISC | cmpl cmp2
20 1.676 | 1.5225 1.5225 1.5225
40 1.6759 | 1.5225 1.5223 1.5223
60 1.6759 | 1.5225 1.522 1.5221
80 1.6759 | 1.5225 1.5218 1.5218
100 1.6758 | 1.5224 1.5216 1.5216
120 1.6758 | 1.5224 1.5214 1.5214
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iX mem HIDISC cmp cmp2
 Matr 20 1.5131 0.8128 (.85 0.87
40 1.3527 (.7832 0.5344 (.85642
60 1.2224 0.738 0.8115 0.841
80 1.115 0.6953 0.7867 0.8249
100 1.025 0.6583 0.7649 0.8109
120 (.9484 0.6246 0.7435 0.7966
Feld mem HIDISC cmpi cmp2
20 1.75 1.6 1.6 1.6
40 1.75 1.6 1.6 1.6
60 1.75 1.6 1.6 1.6
850 1.75 1.6 1.6 1.6
100 1.75 1.6 1.6 1.6
120 1.75 1.6 1.6 1.6
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USC Information Sciences DIVA Project Final Report

List of Acronyms

Acronym

Meaning

ASIC

Application-speciiic nteorated cireuit

ASNT Advanced scalable networking technology

BIOS Basic imput/output svstem

Pl Compact peripheral component interconnect

CPLD Complex programmable logic device

DLX Pronounced "Deluxe”. a representative load-store architecture described in

' v Architecture: antitative s cnach, by John Hennessy and

David Patterson, Morgan Kautmann Publishers, Ine, [990

DRAM Dyvpamic randoem access Menmor

DDR Double data rate. refers to DRAM

DRC Desion rule checls

GCC Gnu C compiler

[SA Instruction-set architecture

IEDEC loint Electron Deviee Engineering Council

LVS Lavout versus schematic

MMX Intel's multimedia instroetion-set architecture

NAS NASA Advanced Supercomputing Divisjon

PCp Prioted cireuit board

PCI Peripheral component interconnect

RSIM Rice Simulator for [LEP Multiprogessors

RTEMS Real-Time Operating Svstem for Multiprocessor Systems

SALU Scalar arfthmetic logic unit

SIMD Single instruction, multiple data

SLP Superword-level parallelism

SODIMDM | Small Outhine, Dual Inline Memory Module

SRAM Svpchronons Random Access Memors

VDO Voltage [hreet Current

VLSI Very Large Scale Integration
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Abstract

This paper presents code transformations designed to take advantage of the potential 2 orders of magnitude band-
width increase available in a PIM-based architecture. Using an image processing application as a case study, we
demonstrate how code transformations can exploit: (1) fine-grain parallelism in the wide-word processing unit to
maximize the computation performed on each processor cycle; (2) data reuse in the large register file to avoid
unnecessary memory accesses that stall the processor; and, (3) page mode accesses in the memory array to mini-
mize the cost of each remaining memory access. While most of the transformations described here are well-known
compiler techniques, in PIM-based systems we require a new optimization strategy to meet a very different optimi-
zation goal as compared to conventional approaches focused primarily on exploiting locality in a data cache. We
demonstrate the importance of each set of transformations through simulation results.

1.0 Introduction

The increasing gap between processor and memory speeds is a well-known problem in computer architecture,
with peak processor performance increasing at a rate of 60% per vear while memory access times improve at
merely 7%. Further, techniques designed to hide memory latency, such as multithreading and prefetching, actu-
allv mcrease the memory bandwidth requirements [Burger®a]. Recent VLS technology trends offer a promis-
ing solution to bridging the processor-memory gap: integrating processor logic and memory in a processing-1n-
memory (PIM) chip. Because PIM internal processors can be directly connected to the memory banks, the
memory bandwidth is dramatically increased (up to 2 orders of magnitude, tens or even hundreds of gigabits
per second aggregate bandwidth on a chip). Latency to on-chip logic is also reduced, down to as little as one-
fourth that of a conventional memory system, because internal memory accesses avoid the delays associated
with communicating off chip.

An important class of applications well-suited to PIM-based svstems arise in image processing and other mul-
timedia problems. Such applications are bandwidth limited because they perform repeated computations on
streams of data; sometimes the applications have little temporal reuse [Ranganathan99]. At the same time, the
applications often exhibit inherent spatial locality and both fine-grain and coarse-grain parallelism. These
properties map well to PIM-based architectures. PIMs exploit spatial locality and fine-grain parallelism by
accessing and operating upon multiple words of data at a time. and exploit coarse-grain parallelism by spread-
ing independent computations throughout the memory. Thus, there 1s a significant opportunity for compiler
technology (or clever programmiers ) to achieve very high performance on PIM-based svstems.

[n recent vears, researchers have proposed many PIM-based architectures|Elliot99.Gokhale9s, Kang99,
Oskin98, Patterson9 7, Saulsbury9e, Suraga6. Torrelas00], but httle attention has been paid to developing com-
piler technology for such systems. Nevertheless, new compiler technology is needed to exploit the very differ-
ent architectural features of a PIM system. On-chip memory latencies are very low. An access to the same row
in the memory array as the previous access (i.e., a page mode access) costs only a few cveles, and other
accesses (In random mode) are 3-4 times slower, but still quite fast. Because of this lower latency, many PIM
devices do not have conventional data caches, but instead relv on simple, and much more space- and power-
efficient, caching mechanisms within the memory arrays themselves (for example, to exploit page mode
accesses) [Elliot99,0skin9s. Saulshury9e, Zawodnvos]. To exploit available on-chip bandwidth, many PIM
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chips also have wide data paths from memory to processing logic, and processors that can operate on several
words of data in one processor cvele [Oskin98,Patterson97]. To increase on-chip bandwidth further. many PIM
chips are small-scale multiprocessors, with  processing logic  sprinkled throughout the memory
[Elliot9o,Kang99,0skin9s].

In this paper. we examine code transformations to exploit potential bandwidth of a particular PIM-based sys-
tem called DIVA (Data-IntensiVe Architecture), which has all of the three architectural features described in
the previous paragraph (f.e., caching only within the memory array, wide datapaths, multiprocessor-on-a-chip)
[Hall99]. Using an image processing application as a case study, we describe how the code could be effectively
transformed to tailor it to the DIVA architecture. These transformations accomplish several goals, exploiting:
(1) fine-grain parallelism in the wide-word processing unit to maximize the computation performed on each
processor cyvele: (2) data reuse in the large, wide register file to avold unnecessary memory accesses that stall
the processor; and, (3) page mode accesses in the memory array to minimize the cost of each remaining mem-
ory access. We discuss the techniques that must be supported by a compiler to perform these transformations.
While most of the transformations described here are well-known compiler techniques, in DIVAA we require a
new optintization strategy to meet a very different optimization goal as compared to conventional approaches
focused primarily on exploiting locality n a data cache.

In this paper. we assume that global data and computation partitioning has been performed across the svstem
[Anderson93], and we concentrate on how to optimize code for a single PIM processor. We describe each
transformation used. and illustrate how it impacts the performance of our application. We present simulation
results demonstrating the contribution of the transformations. Owerall, we find that these transformations
reduce the number of memory accesses by almost a factor of 350, with most of the remaining memory accesses
in page mode. We also see a factor of 13 reduction in dynamic instructions executed. For this paper, we coded
the application in the DIVA 1SA and performed the transformations by hand. We are using this and case studies
of other applications to guide the development of a compiler transformation algorithm to automatically per-
form these transformations, and we are using the significant analysis and code transformation infrastructure in
the Stanford SUIF compiler as a basis for our implementation.

The remainder of the paper is organized into three sections and a conclusion. The next section presents an over-
view of the DIVA architecture. Section 3 describes the image processing code we use as a case study and the
compiler transformations applied to it. Section 4 presents simulation results.

2.0 Overview of DIVA System Architecture

Huost MHnst ] -
Processor Huost Local Bus cmory s
Management Memory
Processing
Logic
Bus PIM-PIM
Host Interface ¥ Interface
Systerm Bus Unit Interconnect o~

Figure 1: DIVA System Organization

In Figure 1. we show a small set of PIMs connected to a single external host through a host-memory interface;
through this interface the host processor performs standard reads and writes, augmented as discussed in Section
2.2. The PIM chips communicate through separate PIM-to-PIM channels to bypass the system bus with addi-
tional memory traffic, used to spawn computation, gather results, synchronize activity, or simply access non-
local data. The separate interconnect is provided because PIM-to-PIM communication requires greater band-
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width than can be achieved with a conventional memory bus. Because this paper focuses on the activity within
a PIM node, we omit further description of the PIM-to-PIM interconnect, which is described in [Hall99].

2.1 PIM VLSI Component

A PIM 1s a VLSI memory device augmented with general and special-purpose computing hardware. A PIM
may consist of multiple s#odes, each of which are comprised of a few megabvtes of memory and a node proces-
sor. The mset in Figure | shows a PIM with four nodes. The nodes on a chip share resources for communica-
tion with the rest of the svstem. As a result each chip contains a single PIM-to-PIM interface and a hosl
interface. We anticipate that DIVA PIMs, like many other PIM chips. will be split roughly 60% memory and
40% logic (reflecting the importance of memory density).

Within a single node, shown in Figure 2. the processing logic consists of a standard scalar microprocessor
including a floating-point unit and a special DIVA wide-word functional unit that performs operations on 256-
bit aggregate objects stored within a row of the local memory array. The wide-word unit can be used to perform
bit-level operations such as simple pattern matching. or higher-order computations such as searches, and asso-
clative and commutative reduction operations. The wide-word unit has a large register file, with 32 256-bit reg-
isters. Detatls on a related wide-word unit are discussed elsewhere [ Brockman99].

During execution, data is transferred directly from the memory array into the register files; there 1s no on-chip
data cache. Instead, we use the sense amps in the memory array as a small data cache, holding the full 2k-bit
row selected from the previous memory access. I two consecutive accesses are within the same memory row,
the second access 1s referred to as a page maode access. A page mode access 1s much faster than an access to an
arbitrary memory row (a random mode access), because it does not pay the penalties for clearing the sense
amps and loading a new row. In DIVA, we assume there 1s roughly a factor of 3 difference in latency for page
mode and random mode accesses.
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Figure 2: DIVA Node Organization
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The mstructions supported by the wide-word unit resemble those of multimedia 1SA extensions such as MMX
and Altivec, but in the case of DIVA, because the data comes directly from memory at low latency, we can
expect much better performance for applications that do not make effective use of cache. The architecture also
supports direct transfers of data between register files, rather than going through memory as in Altivec.



2.2 Host-Memory Interface

An underlving goal is that DIVA PIM devices can also serve as conventional memory, so that they could be
used as smart-memory coprocessors in a standard system. This goal motivated a design of the PIM VLSI
device to include a host interface consistent with the standard memory interface tvpical of commercial memo-
ries. In keeping with this goal. we would also like to package the PIMs in DIMM modules with provisions for
top-plane interconnections between the memory chips to support the PIM-to-PIM communication fabric. How-
ever, unlike commercial memories, computation activities give rise to new problems: how to communicate
internal exceptions and possible memory busy conditions to the host system. These issues are being addressed
as part of the larger svstem architecture.

2.3 DIVA Memory Model

The DIVA memory model supports a globally addressable, distributed address space across the svstem. Coher-
ence between the host and PIMs must be enforced in software. PIM nodes communicate using parcels, a vari-
ant of active messages, where messages are directed to objects rather than nodes. Segment registers at each
PIM node support very fast on-chip address translation for local addresses: a home node provides translation if
the address is non-local. Further details on the DIVA memory model can be found elsewhere [Hallg9].

3.0 Code Transformations

In this section, we describe code transformations for exploiting the enormous bandwidth available on PIM-
based svstems such as DIVA. While most of these transformations are well-known compiler techniques, PIM-
based systems require a new optimization strategy to meet different optimization goals as compared to conven-
tional approaches, which focus primarily on exploiting parallelism and locality in a data cache.

Our first optimization goal 1s to achieve high bandwidth utilization by exploiting fine-grain parallelism in the
wide-word processing unit. Techniques for exploiting fine-grain parallelism in the wide-word unit also apply to
multimedia extensions such as MMX and AltiVec, which have wide register files and allow multiple operations
in a single processor cyele. Once fine-grain parallelism is exposed, the other optimization goals are to exploit
data reuse in the wide-word registers to avoid unnecessary memory stalls, and to take advantage of page mode
accesses in the memory array to minimize the cost of the remaining memory accesses.

To accomplish these optimization goals, we relv on several analyses and code transformations, most of which
are well-known. Parallelization analvsis, which includes data dependence analvsis and array data-flow analv-
sis, identifies loops whose iterations can be executed safely in parallel. Rewse analysis identifies loop iterations
that access the same data (temporal reuse) or distinet data in the same cache line (spatial reuse). In addition to
these analyses, several code transformations are required: the safety and profitability of the transformations are
hased on the above analvses. Loop interchange two tightly nested loops switches the inner and outer loop, and
15 used both: (1) to move a parallel loop to a particular position in the loop nest (innermost for fine-grain paral-
lelism or outermost Tor coarser granularity): and (2) to move reuse to an innermost position. Loop unrolling
creates multiple copies of a loop body and modifies the loop control accordingly. Statement reordering reorga-
nizes statement execution while preserving data dependences. Loop fusion involves combining two adjacent
loops with the same loop control into a single loop, used to promote reuse between the loops. Tiling reorders
the iterations in a loop nest to bring accesses to the same data closer together in the iteration space. Parallel
reductions are transformed versions of commutative and associative operations whose iterations can be reor-
dered; a particular implementation of a parallel reduction is to perform independent operations on private cop-
ies of the variable and accumulate the partial results to the global copy of the variable. Register allocaiion for
array variables uses data dependence analysis and loop transformations to map array variables to registers. In
DIVA, we have also identified the need for a new transformation, skifting within a wide register between oper-
ations to exploit spatial reuse.

We are using the Stanford SUIF compiler as a basis for our implementation. With the exception of statement
reordering, arrav register allocation, and the shift operation, implementations of the required analvses and code
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ransformations are already present in SUIF [Wolf92][Hall95]. These transformations must be performed in
conjunction with global data and computation partitioning, which exploits coarse-grain parallelism by parti-
tioning the computation across the PIMs [Anderson®3], for which SUIF also has an implementation. Our cur-
rent research involves developing a decision algorithm for using these analyses and transformations, reworking
the existing decision algorithm to focus on the unique optimization goals in the DIVA architecture.

We demonstrate how to emplov these transformations for PIM-based architectures with a case study from a
template-matching code called SLD from Sandia National Laboratories. This code performs a correlation
hetween an image and a series of templates to match the templates to windows within the image: it sums the
image gray-scale values for pixels that are nonzero in the template. A pictorial deseription and a simplified, but
representative loop nest is shown in Figure 3. In the figure, we show the image on the left, and the templates on
the right. The two innermost loops perform a correlation between a single template and a particular window
within the image; the two outer loops move the window of interest within the image.

Image Template
|
— --
for (irow = 0; irow = 32 irow ++) * raverse image rows *
for ficol = 0 icol < 327 icol ++) # traverse image columns #
For {trow= 0: trow = 32 trow ++) * raverse template rows *
for (teol = 02 teol < 32; teal ++) * traverse template columns®
il (template| row][lcol | = 0}
corr[irow][1cal ] += image [irow row |[icel+teol]:

Figure 3: Original loop nest from template-matching code

The rest of this section shows how this loop nest is transformed to better exploit features of the DIVA system.
We assume that this work is done in conjunction with global data and computation partitioning, which exploits
coarse-grain parallelism by partitioning the computation across the PIMs [ Anderson93]. The SUIF compiler is
able to partition the computation by giving different templates to different PIMs, with no inter-PIM communi-
cation.

3.1 Step 1: Fine-Grain Parallelism

The most important opportunity for high bandwidth utilization is to take advantage of the fine-grain parallel-
ism in the wide-word instructions. Figure 4 shows how this is achieved in our example loop nest. Because each
pixel is represented by an 8-bit object, 32 pixels can be processed in a single processor cvele. The mnermost

loop is transformed to exploit the wide operations, consisting of loads, alignment, a pairwise logical and, and a
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macro that implements a reduction sum. The reduction sum is a 4-stage reduction operation that combines por-
tions of the correlation register until the sum of all elements 1s computed.

for (1row = 0; row < 32; 1row ++) * raverse image rows *
for ficol = 0: 1cal < 327 1cal ++) # traverse image columns *
for (trow= 07 trow < 327 trow ++) 4 * traverse template rows *

# loop teol becomes sequence of wide operations *

wld WR 11, &{(image[irow-+Hrow][icol]; * load lower half of image row *

wld WR12, &(image[irow-+Htrow][icol+32]: * load higher half of image row *
align (WR11, WRI12. icol): *align 10 wide register WR11 #

wld WR 13, &(template[trow][0]); * load template row *

wmul WRI, WRI11, WR15: * select pixels according to template *
corr[irow |[icol] += reduction_sum (WR 1) * add up selected pixels *

Figure 4: Loop nest after transformations for fine-grain parallelism.

We use data dependence analysis and reduction recognition to identify this fine-grain parallelism. Further, we
must employ reuse analysis to identify parallel loops for which there is also spatial reuse. The innermost loop
must perform the same operation on adjacent (or nearby, with uniform stride) elements to be able to exploit the
wide word instructions. In some cases, loop transformations such as loop interchange are needed to move the
desired parallel loop, with spatial reuse, to the innermost position.

3.2 Step 2: Spatial Reuse in Large Register File

Once parallelism is exploited, our next priority is to eliminate as many accesses to memory as possible, to
avoid wasting the bandwidth to memory stall cveles. Since we do not have a cache, we must reuse data within
registers as much as possible. We exploit both spatial and temporal reuse in the wide registers. Spatial reuse 1s
possible because a load into a wide register fetches several consecutive words in one transfer; Tor example. in
the mmnermaost loop from Figure 3, spatial reuse occurs because several arrayvs are accessed by columns {assum-
g row-major ordering).

Inthe icol loop, there is both spatial and temporal reuse. Each iteration of 1ol operates on a subrow of the
image consisting of elements (icol. ..., icol+21), and therefore consecutive iterations of 1col, sav 1 and
i1, operate onelements (1, ... 1+31)and (i+1, ... i+32). As illustrated i Figure 4, each ileration of icol
accesses a new image pixel that is consecutive in memaory to the last pixel accessed in the previous iteration.
Also, pixels (i+1, ..., 1+31), accessed in iteration 1, are reused in iteration 1+1. To exploit the reuse in this
loop, the loop nest 1s transformed by interchanging loops icol and trow, making loop icol what 1s now the
innermost loop. On each iteration 1 of loop icol. the subrow (i. ..., 1+21) is brought to a wide register by
shifting the data in wide registers WRI 1 and WR12 so that pixel i-1 is shifted out and pixel 1+32 -1 is shifted
into the last byvte of WR11. Since the same wide words are loaded from memory on all iterations of loop 1icol,
the memory accesses can be moved outside the loop. While this shift operation 1s an unusual compiler tech-
nique specifically for operations on wide data tvpes, detecting its applicability 1s straightforward, mvolving
checking the dependence distance on the loop for small, constant distances. Also. the number of accesses to the
correlation matrix is reduced by exploiting the spatial reuse of corr [irow] [1icol] inloop icol. A corre-
lation row is loaded into a wide register and on each iteration of loop icol, the correlation value
corr [icol]is updated and stored back in the wide register. Figure 5 shows the resulting loop nest after these
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transformations.

for (trow = 0; irow < 327 irow ++) * fraverse image rows
For {(trow= 0: trow < 32: trow ++) ! * traverse template rows *

wld WRI11, &{image|irow Htrow |[0]): * load lower half of image row *

wld WR 12, &(image[irow-+trow |[32]): #* load higher half of image row *

wld WR 13, &itemplate [trow][0]): * load template row *

wld WR20, &{corr[irow]|[0]): * load correlation row *#

for (icol = 07 icol = 32: icol ++) | * traverse image columns *
wimul WEIT, WRI11, WRI15: ® select pixels according to template *
WR20[1icol] += reduction_sum (WR1); * add up selected pixels *
shift_right (WRIL, WRI11, WR12); * shift image row by one pixel *

|

wst WR20.&(cor]irow][0]): * store correlation row *

Figure 5: Loop nest after spatial reuse transformations

Exploiting temporal reuse in the wide registers is also important, not only for reducing the number of memory
accesses, but also for reducing potential intervening accesses that would displace the open memory row, and
result in subsequent larger random-mode latencies. Temporal reuse in the wide register file 1s exploited in Step
4 below.

3.3 Step 3: Maximizing Page Mode Memory Accesses

The transformations for exploiting reuse result in a significant reduction in the number of memory accesses.
However, since there are accesses to three distinet arrays (image. template and correlation) in the body of loop
trow. there are intervening accesses between loads of consecutive image rows and consecutive template rows.
These intervening accesses displace the current open memory row from the sense amps between reuses of the
same memory row, and as a result, most of the memory accesses that reuse a memory row still suffer from
higher random-mode latencies.

To exploit the lower page-mode latencies, we must reorder the loads. In the example of Figure 5, this can be
accomplished by unrolling loop trow and grouping the memory accesses. We then fuse together the unrolled
loop bodies. Figure 6 shows a simplified version of the resulting code, in which loop trow 1s unrolled by a fac-
tor of 2, Tor tllustration purposes only. In practice, the unrolling factor depends on the size of the wide register
file. In our experiments, we actually unroll the trow loop by 3, resulting in 4 copies of the loop body, so that
the result will fit in the 32 wide registers.

[dentifving potential page-mode accesses, that s, memorv-row reuse, 1s equivalent to identifving spatial reuse
at a wide word granularity. In other words, the locality analvsis that identifies spatial reuse in caches can be
extended to identify loop iterations that access distinet wide words in the same memory row. Once anyv mem-
ory-row reuse is identified, loop transformations may be applied to reduce the reuse distance. When the mem-
OrY-row reuse occurs in consecutive tterations of a loop, but there are still intervening accesses on each
iteration, the reuse can be exploited by unrolling the loop and grouping together the memory accesses with
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memory-row reuse, as in the example in Figure 6.

T
3L

for (irow = 07 irow < 320 irow ++) * traverse Image rows =

* loop trow unrolled by 2 #

for {trow= 07 trow < 32; trow += 2) \ * fraverse template rows *

* load 2 image rows in page mode *

wld WRII, &{image[irow-+trow |[0]: * load lower half of image row *
wld WR12, &(image[irow +Htrow [[32]: * load higher half of image row *
wld WR 13, &{(image[irow+trow-+1][0]: * load lower hall of next image row *
wld WR 14, &{(image[irow Hrow+1][32]: * load higher half of next image row *

* load two template rows in page mode *

wld WR 15, &template[trow][[0]: * load template row *

wld WR 16, &template[trow-+1][0]: * load next template row *

wld WR20, &{corr|irow][0]); * load correlation row *

for (icol = 0: 1col < 32;1cal ++) { *raverse image columns *
wmul WRI, WRI1, WRIS: *select pixels according to template *
WR20[icol] += reduction_sum (WR1); *add up selected pixels *
shifi_right (WRI1, WR11, WR12): # shift image row by one pixel *
wimul WR1, WRI13, WRI6: * select pixels according to template *
WR20[icol] += reduction_sum (WR1); *add up selected pixels #
shift_right i(WRI13, WR13, WR14): # shift image row by one pixel *

|

wst WR20, &(corrfirow][0]): * store correlation row #

Figure 6: Loop nest after transformations to maximize page mode accesses

3.4  Step 4: Wide Register Allocation for Array Variables

Figure 7 shows a simplified version of the final code. In this version, we transform the code to exploit temporal
reuse in wide registers, to complement the spatial reuse in Step 2. Effectively, what we are doing is performing
code transformations to facilitate allocating array variables to wide registers, as is done in conventional archi-
tectures [Carr94] [Wolf92]. Previous approaches achieve this goal with some combination of tiling, unrolling
and fusion: they exploit only temporal reuse, as spatial reuse only comes into play when registers hold multiple
words of data. In DIVA, we must first exploit spatial reuse in the wide registers as in Steps | and 2. and then
oiven the spatial reuse, also exploit temporal reuse. Here, we perform tiling to move the temporal reuse closer
together in the iteration space, so that the data can it in the limited space of the wide register file. We unroll the
tiled loops so we can refer to the appropriate register explicitly in the code.

[n the example. shown in Figure 7, we exploit the temporal reuse of template [trow] carried by loop
irow loops irow and trow are tiled. and the tile sizes are chosen so that a set of image rows plus a set of
template rows fits in the wide register file. Furthermore, since the set of template rows (2 rows shown in the
example code) 1s reused in the tiled loops, each template row needs to be loaded only once, before a new tile 1s
executed. In practice, the tile size depends on the dependences and the size of the wide register file. In our
experiments, we use a tile size of 2 for the 1row loop and 4 for the trow loop.
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* loop irow tiled by irow_tsz *

for Grrow = 07 irow <2 327 jrow += irow_Isz) * traverse image rows *

# loop trow unrolled by 2%

for (trow= 07 trow < 32: trow += 2) : * traverse template rows *

# load two template rows in page mode *

#*template rows are reused in tiled loop irow™ #

wld WR 15, &(template[trow][0]): * load template row *
wld WR 16, &(template[trow-+1][0]): * load next template row *
For (irow” = Trows irow” = min (irow-+-row_tsz, 320 irow” ++) |

* load 2 image rows in page mode *

wld WRIL, &(image[irow +trow][0]): * load lower hall of image row *
wld WRI12, &(image[irow +trow][32] ) * load higher half of image row *
wld WRI3, &{image[irow”Hrow+1]]0] ) * load lower half of next image row *
wld WRI4, &{image[irow +trow+1][32]) * load higher half of next image row *
wld WR20, &{corr[irow][0]): * load correlation row *
for (icol = 0;icol = 327 icol ++) { # traverse image columns #
wmul WR1, WR11, WRI1S: # select pixels according to template *
WR20[icol] += reduction_sum i WR1):; * add up selected pixels *
shift_right (WR11, WRI1, WR12): * shift image row by one pixel *
wmul WR1, WRI13, WR16: * select pixels according to template *
WR20[icol] += reduction_sum { WE1); * add up selected pixels *
shifi_right (WRI13, WRI13, WR14): * shifl next image row by one pixel #
i
wsl WR20, &(corrirow][0]): * store correlation row *

Figure 7: Final code, including transformations for temporal reuse in registers

4.0 Experiment

We simulated four versions of the benchmark on our DIVA simulator, and present results on the improvements
due to the transformation steps from the previous section.

4.1 DSIM Simulation Environment

We have developed a system simulator called DSIM, which uses RSIM as a framework, with significant exten-
sions [RSIM]. RSIM models shared-memory multiprocessors built with state-of-the-art processors. The DSIM
host processor is taken directly from RSIM, as well as the host first and second-level caches. Our extensions
include a simpler PIM processor with a WideWord ALLL a new memory svstem. and a new PIM-to-PIM inter-
connect network. We also developed application-level primitives for DIVA, such as a flush instruction, and a
barrier for PIMs and host.

Table | summarizes the host and PIM processor parameters used in our simulations. DSIM models a host pro-
cessor with out-of-order istruction execution, multiple-issue and non-blocking loads, with an architecture
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based on the MIPS R10000. Both L1 and 1.2 caches are pipelined and support multiple outstanding requests to
separale cache lines. The host node is connected to the memaory system via a split-transaction, 64hit-wide bus.

Each PIM node includes a PIM processor, a memory bank (which includes control and arbitration logic), and
an interface to the PIM-to-PIM interconnect. The PIM processor is much simpler iand smaller) than the host
processor. We extended the RSIM ISA with DIVA PIM wide mstructions that operate in 256-bit wide words.
For these experiments, we make the conservative assumption that the PIM processor runs at half the speed of
the host svstem. Although the inherent speed of the logic is no slower as we are assuming the DRAM is embed-
ded in a logic process [IBM99], we make this assumption because the wide word register accesses could
impact the clock speed.

['he memory system consists of the aggregation of all PIM memories, where each local memory is visible from
hath host and local PIM processor. DSIM models each PIM memory in detail. It maintains the current open
row in the memory bank to determine the memory access time and simulates arbitration between host and PIM

ACCURSES,

Host Processor and Memory Hierarchy PIM Processor
Issue width 4 [ssue width l
Integer arithmetic units 2 Integer arithmetic units I
Floating point units 2 Floating point units |
Address generation units 1 Wide word units I
L1 cache size 32K bytes
L1 cache hit time | eyele
L2 cache size I M bytes
L2 cache hit time 10 cyeles Pim Memory
L1, L2 cache associativity | 2
Memory latency 32 cyeles (page mode) Memory latency (in PIM 2 cyeles (page mode)
60 cyeles (random mode) el b L 6 cyeles (random mode)

Table 1: Simulation Parameters

4.2  Results

[n order to evaluate the benefits of the compiler transformations described in Section 3, we performed experi-
ments using four versions of the example loop nest. The first version, Scalar, corresponds to the original loop
nest of Figure 3. The second version, which we call Fine-Grain, corresponds to Figure 4, where fine-grain paral-
lelism is exploited using wide instructions. The third version, called Spatial Reuse, exploits spatial reuse in wide
registers as in Figure 5. The fourth version, called Max Page Mode +Temporal Reuse combines the transforma-
tions from Figure 6 and Figure 7 for maximizing page mode accesses and exploiting temporal reuse in the wide
register file.

All four versions of the loop nest were hand-coded in the DIVA PIM ISA. We originally ran experiments using
the original sequential loop nest from Figure 3, which was written in C and compiled with optimization level 4.
However, since the code generated by the compiler is not tuned to the DIVA architecture. a comparison
hetween the hand-coded transformed loops and the compiled scalar version unfairly skewed the benefits of our
approach. We thus hand-coded the sequential version in order to perform a fair comparison of all versions of
the loop nest. In our hand-coded version of the original loop nest, we unrolled the innermost loop by a factor of

4, so that a single 32-bit load brings 4 pixels to the register file on each loop iteration.
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Table 2 shows the effect of the transformations on the number of dvnamic instructions executed and on the
number and tvpe of memory accesses.

Y page
LLrs «
— yage mode

code version . ol . .

# instrs total reads | mode reads | total writes writes
Scalar 30504 M 2507 M 33.33% 2530 M 0%
Fine-Grain 3I34TM 315 M 33.33% 023 M 56.23%
Spatial Reuse 275TM 023 M 57.12% 0.29 M 65 97%
Max Page Mode + 20955M| 011M 77.89% |  003M 74.99%
Tempaoral Reuse

Table 2: Impact of Transformations on Memory Accesses

Using Scalar as a baseline, we see that roughly 13% of the instructions are memory accesses. As compared to
the baseline, we see a facior of over 350 reduction in memory accesses n the final version, and a factor of over
13 reduction in dvnamic instructions executed. This improvement 1s due to several factors. Fine-Grain shows a
factor of almost 15 reduction in memory accesses and a factor of over 11 reduction in dvnamic instructions by
exploiting the available memory bandwidth using the wide ALU and wide data path to memory. Exploiting
spatial reuse in registers, particularly with the shifting operation, results in a factor of over 6.3 reduction in
memory accesses in the Spatial Reuse version, as compared to Fine-Grain, but just a modest reduction in dynamic
mstructions executed. The number of writes actually increases we are computing partial correlation sums after
interchanging the loops, which are written back to memory. The Fourth version shows an additional factor of
3.7 reduction in memory accesses as a result of exploiting temporal reuse in registers, and a slight increase in
the number of dvnamic imstructions executed due to the tiling control loop. We also see that in the final version
over 74% of remaining reads and writes are now in page mode (as compared to less than 17% in the original
version ), which results in a lower average memory latency.

We also performed experiments comparing the execution of the entire application on the host processor against
a version running on the host and multiple PIM processors. Figure 8 shows the speedups with respect to the
original sequential program running on the host processor. The PIM versions were oblained by replicating the
(4 Kbyte) image and assigning a subset of templates to each PIM node, with no PIM-to-PIM communication.
Each PIM node computes the matches on its local templates. At the end of the PIM phase, the host collects the
PIM results and computes the best match across all templates. The PIM code 1s hand-coded in the DIVA ISA,
and it is based on the final version from Figure 7. The benefits of exploiting fine-grain parallelism and reducing
memory costs result in a speedup of 2.8 for one PIM node. Combining these benefits with the coarse-grain par-
allelism exploited by distributing the computation ameng several PIM processors, we ohserve a speedup of
38.2 on 32 PIM nodes. Due to simulation time constraints, we used a data set size of 32 templates for the exper-
iments shown in Figure 8. Therefore, each PIM node is assigned only one template in the 32-PIM version, and
the cost of replicating the image (which is performed sequentially by the host) becomes a significant fraction of
the total execution time. We expect the speedups to scale with the number of PIM nodes when using larger data
set sizes, since there is no PIM-to-PIM communication.
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Figure 8: Speedups over host-only execution with increasing numbers of PIM nodes

5.0 Summary and Future Work

This paper presented code transformations for taking advantage of the processor-memory bandwidth in DIVA
and related PIM-based architectures: exploiting fine-grain parallelism in wide word instructions, reuse in the
large register file, and page mode memory accesses. We showed these techniques are highly beneficial for one
image processing code: using the original hand-coded version as a baseline, we see a factor of over 330 reduc-
tion I memory accesses. Another nice feature of this (and many other image processing and multi-media
applications) is that it can also exploit coarse-grain parallelism with (little or) no communication; each node on
each PIM can execute independently. As a result, the application vields scalable parallel performance as more
PIM nodes are introduced, with a speedup of 38.2 over host execution on a DIVA svstem with 32 PIM nodes.

We are working to automate this approach in the Stanford SUIF compiler, which we are using as the basis of
the DIVA compiler. Almost all of the transformations are already implemented in the SUIF svstem, as well as
the tests for safety and an algorithm to guide the transformations based on parallelization and reuse analysis. To
automate our approach, we need to implement a few additional transformations including statement reordering.
shifting and allocation of array variables to wide registers. We must also develop a new algorithm for guiding
the transformations based on the requirements of the DIVA architecture.
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0180,
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Abstract

{IHVA)
Processing-In-Memory  (PIM)

The  Data-Intensive  Archifeciure sysiem

incorporates chips as
SICPi-MEemory. coprocessors lo a microprocessor. This
architecture explons imheremt memory bandwidih both
on clip and across the system. Thus, performances of
pointer-based and sparse-matrix commuaiions as well
as muliimedia applicaiions are significanily enfanced.

A key feature of the DIVA architecture is the address
wiich  supporis
addressing of application code and data. Insiead of

fransfation  mechanism, virfil
profubitive conventional page tables, DIVA provides a
simplified mechanism using segments, In this paper, the
design of the address translation unit s presenied, and
irade-offs |
and design modulation are also discussed.

S design including performance, areq,

1. Introduction

The Data-Intensive Architecture (DIVA) project 1s
buillding a workstation-class system using embedded
memory technology to replace the memory system ol a
conventional workstation with “smart memories” capable
of very large amounts ol processing. The goal of the
project 1s to significantly reduce the ever-increasing
processor-memory bandwidth bottleneck in conventional
systems.  Svstem  bandwiadth  hinutations  are  thus
overcome n three ways, as illustrated i Figure 1: (1)
tizht couphng of a single processing-m-memory (PIM)
processor with an on-chip memory bank; (2) distnbuting
multiple processor-memory nodes per PIM chip; and (3)
utilizing a separate chip-to-chip interconnect, for direct
communication between nodes on different chips that
bypasses the host system bus.

Host Huost
] .
Processor Processor Memory Bus ;“::::j;?‘-
PIM Array
e e —— e ——
Bus | b = e e - - —
Host Interface
Syatem Bus — Intereonnect

Figure 1. DIVA system architecture
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This paper describes the design of an address
translation unit, which 15 the key component that
immplements memory management in DIVA PIM chips.
Previous literature |[1] distinguished two aspects of
memory management requirements from that of other
PIM-based architecture.

*  The PIM serves as the only memory for a standard
host mucroprocessor, assuming the duel role of
“smart memories” and conventional memory.

= DIVA targets apphcations that are most severely
impacted by the processor-memory bottlenecks n
conventional systems: sparse-matrix and pointer-
based applications with irregular memory access
patterns, and 1mage and wvideo applications with
large working sets.

As compared to system-on-chip solutions |[2-3], and
multiprocessors made up solelv of PIM chips [4-5].
DIVA s support for conventional memory access from an
external host requires a dual view ol memorv. from
host’s and the PIM™s perspective. A much broader range
of programming paradigms are provided when compared
with other PIM architectures. As a result, DIVA requires
an  efficient  address  translation  mechanism  and
independent threads ol control as the features n s
memory  models. A previous  paper presented an
overview of the DIVA project and described a memory
model [6] and memory management | 1] to support these
requirements. This paper 15 focused on the design of the
address translation unit and 1ts circuit implementation.
The remamder of the paper 15 organized as follows.
Section 2 deseribes the mechanism of address translation
i DIV AL Section 3 presents the detatled hardware design
of the address translation unit (ATL). Section 4 presents
a VLS mplementation and results, and Section 3
concludes the paper.

2. Address translation mechanism

The virtual address space of the host processor in the
DIVA architecture can be categorized into three
classifications:
= (dobal memory 15 composed ol contiguous segments
distributed  across nodes, wisible to  applications
running on the host and PIM nodes.

= [Phamh o memory 15 a region ol a node’s memory
allocated as  conventional  pages 1 a  host



application’s virtual space and untouched by PIM
node processing.

*  Local memory 1s a region of a node’s memory used
exclusively by node routines. This rule 15 excepted
during imtialisation when the host svstem boot
process loads node software.

A node must be able to rapdly determine 1f an
address 18 located in 1ts own memory, and if so, find the
physical address. Segments  are used 1o condense
translation information. Each segment 15 defined by
segment registers contaimng a base address and size.

The local memory region 1s partittoned 1nto eight
segments in the DIVA architecture. Like pages in a
conventional svstem, the segment descriptors are generic
in nature. [t s only through system programiming that the
segments serve a spectfic purpose [1].

Remote addresses are translated via the concept of a
home node, which 15 guaranteed to have the translation
information. In addition to the local segments, a node
maintains translation information for its resident portion
of the global memory, as well as for any remote data for
which it 15 the home node.

The primary functions of the node address translation
unit are to translate wvirtual addresses to  physical
addresses for those accesses that are locallv resident and
to provide access protection. The tvpes of accesses
generated by a DIVA PIM  processor that require
translation include mstruction fetches and data accesses
to memory or memorv-mapped devices such as parcel
buflers, generated by load or store instructions.

Given the simplicity of the address translation scheme
discussed above, very hitle hardware support 15 needed
to effect translation. A segment base address register and
limit register 15 needed for each of the eight local
segments. Also, one virtual base, limut, and physical base
register are needed for each resident global segment. The
DIVA architecture provides four sets of global segment
registers. The address translation unit contains no direct
support for home node translation, although the preferred
system programming 15 such that the global segments
resident on a node form the portion of global memory for
which that node 15 the home node. I this 15 not the case,
address faults invoke system software that performs the
home node translation,

3. Design of ATU

The DIVA PIM processor provides 4 Gbytes of

virtual address space accessible to kermnel and user
applications via segments that are a power ol 2 1n size,
Segment sizes can range from 236 bytes to the maximum
amount of physical memory avalable to a node. The
maximum segment size in the mital DIVA system design
15 16 Mbyies. Each virtual address generated by the PIM
processor 18 32 bits, and the resulting physical address
generated by the address translation unit 1s also 32 bits,
The PIM processor address translation unit supports
three main tvpes ol address translation: direct address
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translation, local address translation, and global address
translation

Figure 2 shows the three main address translation
mechanisms provided. When the address translation unit
15 disabled., direct address translation occurs, and the
address translation umt will not generate any exceptions.
In this case, the resulting physical address 15 1dentical to

..... ation 1s enabled, then
the scope field of the virtual address much be mspected
to determine what type of translation should be used.

The scope field of the wirtual address 15 the most
significant five bits of the virtual address VA, If this 5-bit
value 15 zero, then local translation 1s used. If the scope
field equals binary value 00001, i.e., the virtual address
falls in the range of Ox08000000 to OxOFFFFFFF, direct
translation 15 used to generate the phyvsical address;
however, unhike the mode where address translation 1s
disabled, an exception can be generated in this case 1f
access privileges are violated. By definition, the address
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region, Therelore, any user-level attempt to access this
region while address translation is enabled will trigger an
exception. Lastly, 1f any of the four most significant bits

of the virtual address are non-zero, 1.e., va|0:3] =0, then
global translation 15 used.
viriual ackdress {va)
o 45 3l
[oeepe | |

va|0:3] w0000 ackdress translation disabled

scope = 00030 OR scope = 00001

k.

lebal iramslaticn|

| lacal translation I |dir\xl iramslation

I physical wldress I
Figure 2. Address translation types

-

Figure 3 shows the steps mvolved in local address
translation. The 3-bit index field of the virtual address 1s

used to select a set of local segment registers for the
translation. The segment base 15 simply bitwise-ORed
with the zero-padded offset of the virtual address to form
the physical address. The specified segment limit register
15 also accessed and mampulated 1 conjunction with the

offset to determne 1f the virtual address 15 vahd.
virtual address (va]

] 43 78 3l
I a0 I'"'L'xl oifsat |
Sagmeni 0 baxe limit l'\r FRL
- -
- -
» -
Segmant 7 11
\—p exception
& checking
[ 3 3l
| physical adiress |

Figure 3. Local address translation
Figure 4 shows the steps involved in global address
translation, which 15 a reverse address translation style.
In this case, the address 1s checked to see 1f 1t 1s mapped



locally by simply ensuring that the address 15 within the
range specified by a vahd set of the global segment base
address and limit registers. The hardware does not
protect agamst overlappmmg  global  segments.  The
multiple sets of global segment registers are checked
concurrently to see 1if any one of them should be used tor

the translation, similar to a fullv associative cache. 1f

there 15 a match, the virtual address 15 simply translated
into a physical address by a bitwise-OR of an offset with
the global segment physical base register of the matching
global segment. The offset 1s formed by using the limit
register of the matching segment to mask off the
appropriate part of the virtual address.

wirtml dddress (vay
1] 43 il

| |

virtuml base

| phpsical mdidrss |

Figure 4. Glcbal address translation
In addition to the translation of virtual addresses to

physical addresses, the address translation unit provides
access protection and bounds checking to ensure that the
offset portion of an address 15 not outside the range of the
segment. The
spectly the access protection mode for that segment.
Table | shows the possible access modes and thewr
corresponding encodings.

Table 1. Segment access modes and

corresponding PR bit encodings

Encoding of PR Bus | Supervisor Privilege User Privilese
00 RWiread-wrile) RW
(1]} RW ROy read only)
10 RW None
11 RO None

Fach local segment limit register consists of a limit

value, a valid bit, and the two PR bits. The first level of

protection for local addresses 1s provided by ensuring
that a vahd set of segment registers 15 used. If the WV bit

of the selected local segment 15 not asserted, an

unmapped access exception occurs. The second level of

protection 15 provided by the PR bits. It the PIM
processor mode and access type are not allowed by the
PR it setiing of the selected segment. an invalid access
exception occurs. The final level of protection for local
addresses 15 provided with bounds checking. The hmit
value of the specified segment is used to nspect bits in
the virtual address offset to ensure that the offset has not
exceeded the segment size. If the segment size
exceeded, an unmapped access  exception
Equation ( 1 specifies the exception condition E for local
translations.

E =

15

oCCurs.

(va, A lmitfindex]g ) v (va, A limitfindex], )

W (Wilgy A limit[inde s )

2 PR bis of a segment himit register
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Although  the conditons for address  translation
exceptions for global virtual addresses are similar to that
of local addresses, the mechamsm 1s quite different due
to the fully associative nature of the global segment
hardware. Basically, 1f one of the four sets of global
segment registers does not merch an attempted global
address access, an exception ocours. A successful march
occurs when a set of segment registers 1s valid, the PR bit
setting allows the access type being attempted. and the
address range specified by the global virtual base and
limut encompasses the global address of the operation
Equation (2 specifies the range match condition RM,
where va 1s the virtual address and base 15 the contents of
the global virtual base register.

' base, 1) v (limit, A (va, @ base,))

m= (Timity ~ (vag &

e (limit,, A (va,, @ basey, )

An unmapped access exception 1s triggered 1f there 15

no valid set of registers that satisfies the range match test.
If there 15 a vahd set of registers that satisfies the range
match test, but the PR bits for that segment do not allow
the attempted access, an invalid access exception occurs.

4.

Implementation and results

Based on the design presented in Section 3, the
schematic for the ATU design 1s presented in Figure 5.
Four major components were designed and implemented
with Svnopsys tools: virtual to phvsical translationi{V2P)

module, controller, special purpose register files, and
probe cirewt.
—————— ¥ Physical |
E;:';'f,,l, Cicha i fdress
— Access:
Virtual o [ yaie
| Physical —ﬂ Exceplions
Trarslation |~ =
Controller - v
i ] il |
| asims Mory [ o
Accass:
Vitval to r 1
) ] N Probe ’Ef.eimf.l
Scalar : Register Tramslation Bircuit e
Uinit Files mic=
y Exception

Figure 5. Schematic of ATU implementation
Design issues for these blocks are as follows:

= W2P module: This 1s the core circuit to implement
the translation scheme specified in Section 3. The
key design 1ssue for this circuit 1s the translation
speed. To achieve the delined specification of 3ns,
several techniques in VIHDL coding for synthesis
were required. The result was a pure combinational
logic circuit that 1s able to implement the translation
mechanism with mimmum overhead 1n speed and
CITCLIL area.



Special purpose register file: This module 15 an
interface for the PIM processor to set up the
translation table. Simce simulianeous translation and
table set-up will never occur with proper svstem
software, the core 1ssue of this module’s design s o
reduce the circwtry area while providing a wide data
bus with low propagation speed, which provides a
complete static table look up for VIFP module to
speed up the translation.

Controller; This module translates bus signals and
memory access signals to two V2P modules, one for
processor  memory  requests  and  the other for
mstruction cache memory requests.
Probe Cirecutt: This module 15 used when a specitic
DIVA nstruction 15 used to probe the address
translation unit, allowing a user-level process to
mterrogate the status of a wvirtual address without
mcurring an exception 1f the address 1s not mapped.
Each module was designed and synthesized using
Svnposys tools; the timing and circuit s1ize of each
module was optimised using the constramnts mentioned
above. The circuitry of the whole address translation unit
was generated using Cadence Silicon Ensemble. The
design 15 based on TSMC 0. 18um technology with
Artisan standard cells. Table 2 summanzes the results.
Varving the use of different optimisations, a great
difference i circwiry area 15 observed. After several
ierations in both synthesis and lavout generation, a 30%,
reduction in circuitry area 1s achieved while maintaining
the same fast translation spead by 1gnoring the constramt
of the special register file’s data path, which does not
affect the translation speed.
Table 2. Circuit Summary

Crate counts TI6T
Power Core: 18.93mW Total: 41. 78mW
Area 500 x 450 pm

V2P Memory: 19.95%, V2P Cache: 19.58%
Conteollers: 0.03%, Probe circuitry: 0.2%
Special purpose recister file: 60 24%,,

In Frgure 6, a lavout of the ATU 15 presented. The
purpose of this lavout 15 to form an mmtial estimate of the
overhead of implementing an  address  translation
mechanizm in the DIVA PIM processor.

Percentage of
modules™ area

Figure 6. Layout of ATU
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This circmtry occupres 500 x 4350 pum, which 1s 2.2%
of the DIVA PIM processor area [7-8]. Considerning most
of the circutry (60% of standard cells 1s register files) 1s
not switching during the translation, there 15 only a 2.9%
power increase  lor  the DIVA PIM  processor
(28 8mW/580mW) to support the address translation
mechamsm.  The overall delay for the ATU 15 4.76ns,
which 15 sufficiently fast to integrate it into the DIVA
PIM processor without any extra delay,

5. Conclusion

This  paper has  presented  the design  and
implementation of the Address Translation Unit to be
used in the DIVA PIM processor. An implementation of
this design, based on TSMC 0.18um technology, has
proven to be easily integrated into the current DIV A PIM
prototype. The ATU 15 a key component to enable
DIVA’s memory management design, which 1s essential
for a uwser-friendly  programming paradigm for PIM
systems like DIVA,
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ABSTRACT

The DIVA (Data IntensiVe Architecturs] system incorpo-
rabes a collection of Processing-ln-Memory (PIM) chips as
SIMArE=INEmory Co-processors to a conventional microprooss-
gor.  We have recently fabricated protobype DIVA PIMMs,
These chips represent the first smart-memory devices de-
gizned to support virtual addressing and capable of execut-
ing multiple threads of controle In this paper, we descrile
the prototype PIM architecture, We emplasize theee unique
features of DIVA PIM2, namely, the memory interface to
the host processor, the 256-bit wide datapaths for exploit-
ing on=chip bandwidth, and the address anskation unit. We
present detailed simulation results on eight benchmark ap-
plicationz, When just a single PIM chip is ussd, we achieve
an average specsdup of 23X over Lost-only execution, due
to losver memnory stall times and inereased fine-grain paral-
lelimn, Thess L-PIM results suzzest that a PIM-baged ar-
chitecture with many such chips yvields significantly Lighes
performance than a multiprocessor of a similar scale and at
a much reduced hardware cost,

Categories and Subject Descriptors

B2 Hardware: Memory Structures; C.L2 [Compuber
Systems Organisation]: Processor Architectures—NMalii-
ple Data Stream Archilectures (Mulliprocessors)

General Terms
Deesign, Performance

Keywords
proceming-m-memory, memory bandwidth, architecturs
1. INTRODUCTION

A recent trend in computer architecture combines process-
ng logie with memory in intellizent processing-in-memory
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(PIM) chips to address the well-known performance gap be-
tween processor and memory spesds 2, T, 8, 12, Iy G,
LT, 20y 21, 22, 25, 27, 2%, 30), Many previous architectural
golutions to the processor-memory Zap such as multithread-
ing, prefetehing, and speculation, seek to reduce or tolemate
memory atency, at the ecpense of increased memory bamd-
width requirements (3, PIMs mstead dramatically improse
memory bandwidth, by L0-100X over conventional DRAM
gyatems, because internal prooessors can be directly con-
nected to the memory banks, Latency to on=chip logic is
also redused, down to less than one half that of a conven-
tional memory system, betause internal memory accesses
avoid the delays associated with conumunicating off chip.

For the last four years, the authors have been developing
one such PIM-based sysbem called Data IntensiVe Architec-
ture (DIVAL The ultimate zoal of the DIVA project is to
design and build a prototype workstation-class system whers
PIMs serve a8 smart=memory co-processors for an otherwise
conventional system, In this paper, we describe the pro-
totype DIVA PIM chip, shown in Figure L, which we have
recently fabricated.

Figure 1: Microphotograph of a DIVA PIM,

DIVA targets two inportant classes of bandwidth-limited
applications: multimedia and rrezular applications, includ-
ing sparse-matrix and pointer computations.  Multimedia
applications perform repested computations on streams of
data, often with little temporal data reuse. As processors
exploit inereased parallelism, multimedia applications be-
come memory bound 23], Performanee of applications with
rrezular data accesses 18 also dominated by memory stalls



gimee such applications usually hawe neither temporal nor
spatial rewse of data needsd to male effective nuse of cache 5.
DIVA aceelerates oth classes of applications by performing
computation directly in memory, requiring novel underly-
ing hardware structures, deseribed in this paper. Streaming
multimedia applications obtain high bandwidth to on=chip
memories through a 256-bit wide datapath, while irregu-
lar applications benefit from very low latency accesses to
memory. A a result, much of the traffic between the host
processor and memory 18 eliminated,

Onr experience with the DIVA PIM clhip Las important
implications for future architectures that seck to maxdimize
memory emdwidth, We demonstrate that simple but pow-
erful hardware mechanizms can vield significant performance
improvements on andwidth-limited applications, Many of
these hardware features, including address translation, the
memory interface and memory-to-memory interconnect, are
apecifically oriented towards architectures such as DIVA, in
which PIMs are smart-memory co-processors to a4 conven-
tional host. Many other features are suitable for convens
tional proceszors and embedded systems-on=a-chip, such as
the design of the WideWord unit.

In two previous papers, we presented the DIVA syatem
architecture, memory model and simulated performance im-
provements due to coarse-grain parallelism in PTMs for 3
programs 9, and we described systemn software require-
ments and memory management functionality [10]. This
paper focuses on the DIVA PIM devies and makes the fol-
lowing unique contributions.

e It is the fiest detailed description of the DIVA PIM
microarchitecture,

It pinpoints some of the design issucs that must be
congiderad in future architectures for exploiting mem-
ory bandwidth.

It presents simulation results demonstrating an aver-
age speedup of 33X on & programs a8 comparsd {o
a oonventional host, The specdups are due to up to
a 9% reduction in memory stall time, and, for 4 of
the programs, an average spesdup of 994X due to the
WideWord unit as comparsd to sealar PIM executicn.

The remainder of the paper is organized as follows, The
nesxct section swnmarizes the DIVA svstem ardhitecturs, to
set the context for the PIM microarchitecture discussion.
Sevtion F describes the microarchitecture in detail. Section 4
presents a set of simulation results on eight programa, Sec-
tion 5 presents the status of the DIVA project. Section G
presents related worlk, and Section T concudes the paper,

2. SYSTEM ARCHITECTURE OVERVIEW
The DIVA svstemn architecture was specifically desiznesd to
support a smoeoth migration path for application software by
integrating PIMs into conventional systems as seamlessly as
poszible, DIVA PIMS resemble, at their interfaces, commer-
cial DRAMs, enabling PIM memory to be accessed by host
goftware either 48 Smart-memory Co-proctEsors or 43 COnvens-
tional memory, In Figure 2, we show a small st of PIMz
connectesd toa host processor throngh neardy conventional
memery control logie (s Section Sl for details on required
maodifications). A separate memory-to-memory interconnect
epables communication betwesn memories without involving
the host processor,
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Figure 2: DIVA system architecture,

Spavming computation, gathering results, synchronizing
activity, or siaply accessing non-local data is accomplishesd
via parcels, A parcel i8 closely relabed to an active message
as it is a relatively lightweight communication mechanism
containing a reference toa function to be involked when the
parce] is received (29, Pareels are distinguished froom active
mesaares in that the destination of a pareel i3 an object in
mMemory, not & specific proeessor,

Parcels are transmitbed through a separate PIM-to-PIM
interconnect to enable communication without interfering
with host=memory traffic,. This interconnect must support
the dense packing requirement of memory deviees and allow
the addition or removal of deviess from the system, For
systemn sizes of the scale expectesd for DIVA (on the order
of 32 PIM chips), this combination of requirements fwvors a
one-dimensional network [14]. Future generations of DIVA-
liker systemns that contain large numbers of PIM chips will
require & more complex interconnection network and are the
topic of future researcl.

Parcels, application code, and data contain virtual ad-
dresses, To translate thess addresses without the overhead
of maintaining conventional page tables at cach node, we
classify DIVA memory according to usage 9 (1) glohal
memory visible to the host and PIM nodes; (2) dunb mem-
ory allocated as conventional pages in a host application's
virtual space and untowched by PIM node processing and,
(30 doead memory used exclusively by PIM node routines. To
condense translation information, rather than page tables,
wi use serments, each of which is defined by segment reg-
iaters, a8 discussed in Section 34, In addition to local ses-
ments, 4 nocde maintaing translation information for its por-
tion of global memory, Remote addresses are translated via
the coneept of a home node, which 8 guarantosd to have the
tramslation 26], Thus, each node's portion of global mem-
ory includes obijects for whick it is the home node. The ma-
jor advantages of this approach are that translation may be
accomplished rapidly, and translation information on each
PIM scales well.

Memory management functionality is distributed among
the host's standard operating system, angmented with sup-
port for PIMz, and run-time kernels on PIM processors, Un-
like standard multiprocessor gystems, the host, which hasa
gyEteme=level view, remaing a central figure in systemelevel
scheduling, disk 10 operations, and memory management,
The PIM run=time kernel mnst collaborate with the host on
gyvateme=level operations, such as loading PIM programs and
data, memory management of PIM-vigible sezments, and
PIM context switches between different user programs, The



cliallenge in this collaboration is that two views of mem-
ory must be maintained, For dunb pages and for disk [/0
of PIM-vigible sezments, the host sees memory a8 standard
ARy te pages; the PIM run-time kernel instesd views PIM-
visible memory as variable-sized segments [10].

3. DIVA PIM MICROARCHITECTURE
Each DIVA PIM chip iza VISL memory device augmented
with general-purpose computing and oommunication hard-
ware, Although a FIM may consist of multiple nosdes, sach
of which are priosarily comprised of a few mezabvtes of mem-
oy and A node proceszor, Figure 3 shows a PIM with a gsingle
node, which reflects the focus of the initial research that is
being conducteal, Nodes on a PIM chip share a host inderface
and a single PIM Routing Component (PIRC), The host in-
terface nplenents the JEDEC standard SDRAM protocol
g0 that memory accesses as well a3 paccel activity initiaded
by the Lhost appear as conventional memory accesses Tom
the host perspective, The PIRC i8 responsible for both rout-
ing parcels off chip via the PIM-to-PIM interconnect and
directing parcels on chip.

Memory
Processing
To Neighboring PIM e
PEU-_F Memr}r Pcll't
PIM Routing | paroell— o — Tolk|
Component | [ntereonnect FIM Memory Bus
l T | F'EUF| Memory Part|
To Neighboring PIM Host Interface
To Host System Memory Bus

Figure 3: DIVA PIM chip architectune.

Fizure 3 also shows two interconnects that span a PIM
chip for information flow between nodes, the host intecfuce,
and the PIRC, Each interoonnect is distinguished by the
twpe of mformation it carries, The PIM memory bus is nsed
for conventional memory aceesses from the Lhost processon.
The parce] interconnect allows parcels totransit between the
host interface, the nodes, and the PiIRC, The host interface
also contains a parcel buffer (PBUF) for parcel communi-
cation between host and PIM. Each PIM no«de also has a
FEUF, for node-to-noede parcel commmunication, as will be
discussed in Section 3.5,

Fizure 4 shows the major control and data connections
within a node, The DIVA PIM node processing logic sup-
ports gingle-issue, in-order execotion, with F2-bit mstruc-
tions and F2-bit addresses, Thers are two datapaths whose
actions are coordinated Ty a single execution control undt:
a H2-hit sealar datapath that performs operations similar to
those of standard 32-bit integer units, and a 256-bit Wide
Word datapath that performs fine-grain parallel operations
or 8=y 16-, or 32-hit operands, Both datapaths execute from
a single mstruction streson under the direction of a single
Gestage DLX-like pipeline [11], complete with register for-
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warding logic to resolve data dependence hamards,  This
pipeline fetehes instructions from a small instruction cache,
which is included to minimize memory contention between
ingtruction reads and data aceesses, The instruction set has
bevn designed 80 oth datapaths can, for the most part, use
the same opeodes and condition codes, generating a large
functional overlap, The sealar datapath is a standard RISC
architecture, anzmented with a few DIVA=specific functions
for coordinating with the wide datapath. The WideWard
datapath accesses the scalar registers for addressing opera-
tions, a3 well as for controlling superword operations,. Each
datapath has its own independent general-purpose rezister
file with 32 registers. Special instructions permit direct
tramafers between register files without Zoeing through men-
ory. Although not supported in the initial DIVA prototype
ghowm in Figure L, fleating-point extemgions to the Wide-
Word unit will be provided in future systems,

Memory Port |
Node Widc‘\h:'m'd Datapath
H
Memory {Reg File, ALU_ etc)
Memory ™ Pipelined Execution
D[S I-Cache Control Unit
Arbiter ]
F ) & L
Scalar Datapath
e EE— .
{Reg File, AL, etc)

— Address/Control
—ata

Figure 4: DIVA PIM node organization.

The execution control unit supports supervisor and user
moxdes of processing and also maintaing a number of special-
purposs and protected rezisters for support of exception
lemdling, address translation, and general OS services, Ex-
ceptiong, ariging from exeeution of node ingtructions, and
interrupts, from other sources guch a8 an internal timer or
extermal interrupt signal, are handled by a common mecha-
nignm. The exception handling scheme for DIVA has a mod-
eat hardware requirement, exporting much of the complexity
to software, 1o maintain a fexible mplementation platform.
It provides an integrated mechanism for handling hardvware
and software exoeption sources,

The following sections present the DIVA PIM node in
more detadl and highlight some of the unique features of
the DIVA microarchitecture, The first subsection fofuses
on the most distinguishing feature of a PIM as compared (o
a conventional processor, it8 memory unit and memory in-
terfce. Subsequently, we deseribe DIVA'S WideWoerd unit,
parcel interconnect and address translation mechanism.,

3.1 Host Memory Interface and Memory Unit

The host interface and memory unit reflect a number of
the challenges in designing a PIM that serves as a smart-



MEOrY Co-proceEsor to a conventional host, Our underly-
ing goals wers to minimize performance penalties to conven-
tional memory accesses as viewed by the host, while max-
imizing the potential benefit of PIM operationa, Althouzh
the original desion targebed cnbedded DRAM, the proto-
tyvpe shown in Figure L8 an SRAM-based design due to
challenges in timely aceess to embedded DREAM fabrication
lines, W first describe the resulting desizgn nplemented in
this prototype chip and then present necessary considera-
tiong for a DRAN-Taged PIM desizn,

A PIM chip's host interface externally implements the
JEDEC SDRAM protocol sothat the PIM appears as a con-
ventional SDRAM to the host prooessor, On-chip, the host
interface communicates with an internal memory controller
to negotiate access tothe embedded memory, Inessence, the
host interface is a translator between the standacd SDREAM
protocol and an internal PIM-specific protocol. To satisfy
the SDRAM timing requirement, this interface must ensure
consistent timing for hoet memory accesses, At first glance,
this may seen difficult to enforee sinee the PIM node prooss-
gor may be acoessing memory when a host memory request
arrives, thereby cansing the host access to mewr an addi-
tional latency. Howewver, a couple of fictors allow the PIM
to respond with predictable latency as required by the stan-
dard, First, the embedded SRAM macre of the prototype
chip has a 3508 cycle time and 256-hit data bus, Secondly,
the internal clock of the PIM is at least twice that of the
SEDRAM bus (43X for some inplementations), 8o the addition
of an arbitzation cyvele is nesligible to the overall memory la-
tency. Refer to Figure 5, which shows a timing diagram for
a Fevcle CAS latency SDRAM burst read operation. The
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Figure 5 SDRAM burst read timing,

worst-=case read ateney ocours if the memory is busy satisfy-
ing a PIM prooessor request when the host request arcives,
Even in this case, onee the CAS strobe of cyele 3 in the fiz-
ure hiag been detected, there is only a 4-PIM-cyele latency (2
SDRAM cycles) for the read request to be forwarded from
the host interface to the internal node memory controller,
gerviced, and returned for output onto the SDRAM data
bus. This allows the PIM to output the first 64-hit data
word in oycle 6, satisfying the SDRAM protocol. Sinee all
acresses to the embedded memory involve 256G bits of data,
the supceeding Gd-hit data words are readily available for the
host interfaos to output them in cyveles 7, 8, and 9, Similar
timing applics for write accesses,

The internal noce memory comtroller, shown in Figure 4,
consists of two basic components: an arbider and a mem-
ory copbol wmit, The arbiter performs handshaking e
tween requesters of memory accesses and determines pri-
oritv of competing requests,. Requests for acoesses, de.,
reauds and writes, may originate from the host interfuce mem-
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ory port, PIM processor instruction eache, and for memory
stage of the PIM procssor pipeline. Arbitration prioritics
are formulated as follows: 1) host interface, 2) PIM proces-
sor memory stage, and ) PIM processor instruction cache,
The hoat interface hasg the highest priocity since minimal la-
temey is required for the PIM chip to appear as conventional
SDRAM for host procesgor acceszes, The arbiter commumni-
cates clogely with the memory control unit, which is respon-
gible for generating all control signals bo the memory array,
such a8 macro select, write enable, output enable, and ad-
dress bits, Onee a requester hag been granted access, the
requesting source drives the data bus and associated byte-
write=enable signals for write accesses while the memory con-
trol unit drives the control signals, For mead accesses, the
requester shmply latches data returned from the memory at
the appropriate time,

For future DREAM-tazed implementations, the PIM chip
memory syetem must be augmented to support refresh op-
erations and page-mode accesses, For refresh operations,
the hoat interface must be able to translate system memory
controller refresh operations into internal refresh operations,
which is a fairly straightforward exezcise, To cxploit page-
moede accegses, the node memory contzoller should maintain
a current poge address registers For normal read fwrite ac-
peames, the address presented with the request s comparsd
against the contents of the current page address rezister,
assuming that a page is currently openn IF the portion of
the requesting address which designates the DRAM page
matches the value of the current page address register, the
access i3 performed as a page-mode aceess, I the two values
are unequal, a random aceess must be performed, which en-
tails restoring the currently open page and strobing in the
wew page corresponding to the acssss roquest, Simultane-
ously with this acoess, the new page address is latched into
the current page address register. Also, the current paze
address register is invalidated upon refresh operations, sinee:
refresh operations corrupt the values retained in the DRAM
gemae amps, which represent the currently open page.

Also, DRAM-based PIM implementations must carefully
congider the SDRAM interface requirements, As an exzun-
pley consider an implementation besed on the DRAM macro
prowided by the TBM Cu-11 process (13, Like the SRAM
macro used in the first DIVA prototype chip, this macro sup-
ports a Z36hit data bus with byte-write-enable sizgnals to
support writes of data smaller than 256 bits, where needed,
The macro page size i3 2048 bits, The page-mode cycle time
ig 5ma, while the random-mode cyels time is 19ns,

If the system memory controller always initiades full st
recpuests, like the one shown in Figure 5, small modifications
can be made to the internal PIM logic tosatisfy the SDRAM
timing requirements. Agsoon 43 a system memory controller
RAS ovele is detected, the host interface should alert the in-
ternal memaory controller to finish its current memory oper-
ation and remain idle in anticipation of a host request, Even
with the current highest-spesd SDRAM standard, TEMHz,
there i3 a 38nas lateney between the RAS eyvele and when data
ig required for read operations for a Sevele CAS lateney bn-
plementation. Based on the random-mode eyvels times of the
IEM DRAM macro mentioned above, this is adequate time
for the internal node memory controller 1o complete it cur-
rent memory eyvele and respond toa host-initiated memory
cyele, For syetems with intelligent memory controllers that
perform page-mode accesses (initiating CAS-only memory



aperations), the CAS lateney must be confizured to support
the masinum PIM latency. The resulting memory latency
penalty is highly system=dependent in this case,

3.2 WideWord Unit

The WideWord unit operates on 256-bit words, enabling
applications to exploit fine-grain, or superword-level, paral-
lelizm and the inereased processor-memory bandwidth avadl-
able ina PIM node. The WideWord unit has the ability to
clange operand width on a per-instruction basis, enabling it
to treat a WideWord operand as a packed array of objects of
%, LG, or 32 bits in size. With the exception of a few spocial-
imed instructions, this characteristic means the WideWord
ALU is more generally represented a8 a number of parallel
ALUs, where the nunber depends on operand size,

Bemides conventional arithmetic and logic operations, the
WideWord unit also supports a rich set of operations for ma-
nipulating data, including rearrangement of data within a
WideWord operand, transfers between WideWord and sealar
registers and packing and uwnpacking operations,  Further-
more, the WideWord unit supports selective execution of
instructions on a per-datapath besis, depending on the state
of condition codes, The generality of these three features,
az well ag the ability to access main memory at very low
latency, distinguish the DIVA WideWord capabilities from
multimedia ISA extensions such as Intel SSE2 and PowerPC
AltiVer, as well as subword pasallelism approaches such as
MAX 19, We now discuss each of these in detail, and
show examples of their use. In the exaunples, we use the
convention that WideWord instructions and references (o
WideWord registers are both prepended with a 'w',

Permutation. To rapidly alizn and reorganize data in
WideWord registers, the WideWord unit has a permutation
functional unit, which enables any S-bit field of the source
register to be moved into any S-hit field of the destination
register, A permutation is specified by a permutation vee-
tor, which containg 32 indices corresponding to the 32 Shit
gubfields of a WideWord destination register, whers each in-
e selects which subficld of the souree data is moved indo
that destination field. General permutations are specified
siwch as Wprm wroawrl ;wrp, where wrp specifies the desired
permutation vector to be applicd to input wrd, with the
output in wre. Wrp is either constructed through a se-
ries of instructions or is loaded from memors, To byvpass
the coat of constructing or loading general permutations,
commonly used permutations are instead specified such as
wprml wro,wri,sr, whers sris a sealar register that con-
ting an index indoa table of hard-wired permutations, such
as shifts, rotates, shuffles, gathers, scatters and reductions.

Figure G illustrates the use of permute operations with
an exaumple of a reduction sum of the elements of an array
(loaded into worl)s The reduction swm is performed i log(n)
steps, where ri8 the number of elements in wel (in the
examples, no= 4, for simplicity). On each step, the first
permutation swaps each even-numbered field 27 with its od«d-
numbersd neighbor field 28 4+ 1, 0 < § < n/2, storing the
regult in wr2, Then the contents of wrl and wr?2 ave added,
resulting in the swm of each pair of even-/odd-numberad
clements ineach even-munbersd field of wrl, Finally, all
even=-munbered partial sums are permuted into the lower
Lalf of wrl, reducing the problem size by Lalf, After the
last step, the sum of all elements 8 in field mero of wrl
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/i arl refers to permtation | L0352
Jf ar2 refers o permitation (L2 1.3

whd wrl.fzarray): S wrl = (alal-aZ.a3)
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whTImE wrZewrlsrl:
whdd wrlwrl.wr2:
whrmd wrlowrlsr2:
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WPTITEE wr2-wrl.arl:
wadd wrlwrl,wra:

S wr2 = (al.alkaial)
A7 wrl = (addal.a0+al.azaka2+as)
S wrl = (alHal.al+ad = =)

S wrd = (a24akal+al-=*)
/i wrl = (aal+aztad ===

Figure 6; Reduction sum using permutations,

Register Transfers, To enable efficient data movement
between scalar and WideWord register fles, the WideWerd
wnit supports a set of transfer instructioms, The transfer
ingtructions inchude mvswr wr,sr, which replicates the con-
tents of sealar register sr into all felds of WideWord register
wry, LVEW WL,8T,1, which copies sr only to the immediate £
field of wr, and mvws sr,wr,d, which copics the contents of
ar to bmmediade 7 feld of wr

Fizgure T illustrates the use of transfer instructions in a
mixed regular-regular computation where it is advanta-
geous b perform the regular computation in the WideWeord
wnit and the irregular in the scalar ALUL In this escanple, the
multiplication of A% : AJ+3 by X can be performed in the
WideWord unit, sinee amay A I8 accessed with stride one,
To allow the vector-scalar multiplication to be performed in
parallel, X s replicated into a WideWord register, It is not
profitable to perform the addition of YTRE]] and A% = X
in the WideWord unit, since it would be necessary to pack
YIRE] to YIR& + 3] into a WideWord register and chedk
whether R 2 fE+3] are distinet values, Nevertheless, the
computation of the addresses (base address of ¥ plus offssts
Fek] 2 Bk + 3] ean still be performed i parallel, as shown
in the eccaumple. Finally, the operands are moved to sealar
reisters and the additions are performed in the scalar unit,

Selective cosbrution. Selective execution 8 supported
for most arithmetic and logic instructions, permutation in-
gtructions and some transfer instructions, Under selective
exerution, only the rsulis coresponding to participating
subficlds are written badk to the destination rezister spec-
ifiesd in the instruction. Therefors, the inplementation of
gelective execution requires that writeback enable bits be
amociated with each 8-bit subficld of the ALT result, which
complicates the register forwarding logic smnewhat, The
determination of whether a subfield participates i the exe-
cution of a given instruction is derived from condition codes,
twio special-purpose registers, and a field in the instruction.
One gpecial-purposs rezister 8 a user-setiable 32-bit mesh
reqister, where sach bit corresponds to an 5-bit subfield of
the operation. The pordicipation mode register 8 a S-hit reg-
ister that specifies the condition for selective execution asa
combination of condition codes and/or mask register, A 2-
bit participation field in the instruction specifies one of four
pomible ectents of selective exocution: local participation,
where a subfield participabes if its local condition (as derived
from the participation mode and mask register values and
condition codes) is trus; lefanost/rightmost participation,
where only the leftmost/rightmest subfield with a condi-
tion that 8 true participates; and always participate, where
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add =rld.srllsarlz H srls =Y + AKX

st arlisrlse JTYRIK =Y Il + AK*X
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Figure 7: Irregular computation using both Wide-
Word and scalar ALUs,

all subfields participate. Although similar designs support
gome type of conditional operations, the DIVA WideWord
unit provides a much richer Munctionality througl the abdlity
to specifh selective eoscution in almost every wide mstrue-
tion and the use of zlobal condition code nformation
selaction decisions,

This distinction is ustrated in Figure 5, The mstruction
weubee subtracts X from elements of amay C and sets the
condition code for each 32-bit field. Then the subssquent
instruction waddle, where 1o specifies local participation,
performs an addition only on those fields for which the GT
condition code i3 sk,

// Criginal Ioope
firk=0k< N k++4)

.".-' Lf(ﬂd A?:l B

S st pﬂrtt:mﬂhm maxle register (PM)

ori r2, 1. “GT

mispr PM. 2

wid wrl. &A: ffwrl = Hﬂ”'l'ﬂ"ﬁj
wld wr2. &Iz S wrl = (B LEZ LS
wid wrd, &Cr S owrl = {eeleZed)

Id rl, &3 fi=X

wmvswr wrd-rl: A wrd = (XX

wanhoo wri-wrkwrds
waddly wrl. wrl, wr2:

Figure & Sclective update example,

1 wrs = (e Xel-Raod- X om-X)
r'-" FC=X1A=A+D

3.3  Parcel Interconnect

Even for applications where the WideWord instructions
are not applicable, the WideWord datapath is used to accel-
erate all parcel communication, a8 will be discussed here, As
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deseribed earlier, the PIM Routing Component (PiRC) not
only implements the PIM-to-PIM interconnect but also in-
teracts with parcel buffers (PBUFs), the basic on-chip hard-
ware mechanisms supporting parcels, The PBUF Las a vir-
tual as well as a phyvsical abstraction. To the application, the
PEUF locations appear as rezular memory locations that are
manipulated through sinple loads and stores, At a plysical
level, the PBUF i3 a set of memorv-mapped rezisters,. Each
PIM node contzins a PBUF that serves as a port between
the on=chip parcel interconnect and the node. Although a
PIM node's PBUF could be implemented as special-pur pose
registers, a memoryv-mapped mechanism allows a uniform
mmplementation for both node and Lhost PEUF, The FPEUF
within the PIM chip Lost interfce i3 memory-mapped into
the host processor’s address space to permit host and PIM
parcel communication.

A parce]l congists of a 9G-bit hesder and 256-bit pavload.
Mot of the parcel contents are written by the user program
during a parcel launcl; howewver, the system is respongible
for generating some fields such as PIRC routing information,
gonree node ID, prooess identifier, and interrupt status, The
wger program i regponsible for specifving header fields that
include the virtual address of the object to which the parcel
ig directed and a specification of the command to execute on
that object. In addition, the user program specifies the 256-
bit payload, which consists of arguments for the command
task or other data associated with the action specified ey
the parosl,

Data is written to or read from the PBUF in 256-hit in-
crements via the WideWord registers. The PBUF address
gpace can then be viewsd as a set of 206-hit registers, Be-
gides the header and payload registers, there are also status
and confizuration registers, Although the paylead is the
only true plysical 256-hit register, each register is allocated
235 bits of the address space and is alizned to the least siz-
nificant bit boundary, At least two register sets are needed:
one for sending and one for receiving, In addition, it s de-
girable to have multiple address mappings (aliases) of thess
gets to support different access privilesges and modes, such
as non-launching and unching writes to the send registers,
deatretive and non-destructive reads from the receive reg-
isters, and interrupt capability,. The DIVA design includes
geveral aliases to support swch mechanizsma,

3.4 Address Translation Hardware

The primary functions of the nede address tansktion
unit are to translate virtual addresses to phyvsical addresses
for those accesses which are locally resident and to pro-
vide aceess protection. The types of accesses generated by
a DIVA PIM processor that pequire translation include in-
struction fetches and data accesses to memory or memory-
mapped deviees such as parcel buffers, generated by load
or store instructions, Given the simplicity of the ssgment-
Ismed address translation scheme discussed in Section 2,
very Little hardware support i needed to effect efficient trans-
lation. The necessary deseriptors for a local memory seg-
ment are a plysical base address register, offsst limit reg-
ister, and aceess privilege control bits, For global memory
gegments, an additional virtual base address register i3 use-
ful to effect efficient translation, as described below, The
initial DIVA architecture provides cight sets of local seg-
ment registers and four sets of global sezment registers, IF
an application requires a nuwmber of sezments that is more



than that supported by the translation hardware, the PIM
run-time kernel must manage the configuration of the trans-
lation hardware to minimize address faolts, Like pages in
a convendional svetem, serments and their associated de-
geriptors are generic in nature, It is only through system
programming that a sezment serves a specific purposs, such
as representing wser code or data sezments

To distinguish betwesn local and global seoments, we ar-
bitrarily, but with little loss of generality, specify that the
upper 5 bits of a virtual address genemated by a PIM pro-
eemsor indicate the scope of the address, The value of the
geope field determines what type of translation, if any, 8
usad (s Figure 91, For local tramslation, bits 5 through 7
are uged as an index value to select one of eight sets of local
gegment descriptors for translkation and protection checking,
The rest of the virtual address represents an offset from the
gegment bage address, Unlike the able look-up style of local
tranglation, for global translation it is more efficient to de-
termine if the virtual address is contained within the span of
a global sesment. Thus, if the scope value indicates global
tranglation, a fully-associative lookup is performed wging the
wlobal sezment deseriptors, Also, ag shown in the figure, a
gupervisgor-level untranslated region that spens the excep-
tion handler addresses hag been reservedd,  This feature g
useful for kernel code to run disgnostics, such as verifiving
the operation of the address translation hardware without
being incapacitated by related hardware earors,

virtual adelress
15 al
[ ove |
|
(0000 (000 L = 00001
[ local | |univanclated | | cotal |
0 al
| pliysical address |

Figure 9 Address translation in DIVA PIMs.

4.

4.1 Applications

To measure the performance potential of the DIVA archi-
tecture, we examine in detail sizht benchanark applications,
gunmarized in Table L These applications span a hrosd
rangze of domaing including scientific computing, databases
and image processing, They exchibit both coarse-grain paral-
lelism (which allows computation to be spread across PIMs)
and, in seane cases, fine-graim parallelism (which can be
exploited through execution in the WideWord unit). CG,
Mejghborhood, Pointer, 007 and Natural Join exhibit irres-
whar or mixed (regular and irregular) data acoess patberns,
resulting in high memory acesss overheads on conventional
architectures. Cornerturn, Transitive Clogure and Tenplate
Matching are dense matrix computations with regular ac-
ce=a patterns, but memory endwidth becomes a limiting
factor in exploiting available parallelism, These thaee and
CG orely on the WideWord unit to exploit parallelism and

EXPERIMENTAL RESULTS
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FIM andwidths, Hereon, we use abbreviations for each of
the prozram names, with a suffix-H for host and -F for FIM.

4.2  Simulation Environment and Parameters

Toevaluate the DIVA architecture, we developed a system
gimulator called DSIM, which uses RSIM a8 a frameworle,
with significant extensions 24, BSIM is an event-driven
simulator that models shared-memory multiprocessors built
with state-of-the-art multiple issue, out-of<order superscalar
processors, DEIM estensions include a simpler PIM pro-
cesmor with a WideWord unit, the DIVA memory system,
the parcel communication mechanism and the PIM-to-PIM
interconnect, DSIM supports the full DIVA PIM [SA.

The DSIM host processor is talen directly from RSIM, in-
cluding the first and second-level caches, The host processor
architecture i3 based on the MIPS RL0000 and is configured
a8 a four-issue processor with two integer arithanetic units,
two floating=point units and one address unit, Losds are
non=blodldng, It has a 32Kbyvte LL and a IMbyte L2 cache,
both two-way asseciative, with access tines of L and 10 ev-
cles, respectivelv, Both Ll and L2 caches are pipelined and
support multiple outstanding requesta,

The host is connected o the DIVA memory system via a
gplit-transaction, G4-bit bus, The memory system consists
of the azgresation of all PIM memories, where cach local
memory i3 visible from both host and local PIM proces-
gor. DSIM maintains the current open row of each memory
benk to determine the memory access type (page or zandom
mesde) and simulates arbitration between host and PIM ac-
pesmes, a9 deseribed in Section &L The memory ktencies
g by the host are 52 eveles for page-mode accesses and 60
eyveles for random mode, and melude the bus tranafer delay,
the memary arbitration time and the DRAM access time (4
and 12 eycles for page and random mesde, respectively ), The
memory latencies seen by the lecal PIM processor, including
arbitration and DRAM access times, are 35 and L3 cyeles for
paze and random mode accesses, respectively

An application library supports a cache-line flush to en-
force coherenos between the host caches and PIM memory,
as well as gyncloonization and communication functions,
These functions are linked with the application, and their
execution i simulated by DSIM in the sane way as the ap-
plication code, DSIM also models the parcel mechanism and
the PIM-to-PIM interconnect i detail, ot we omit further
deseription ginee this paper focuses on 1-PIM performance,

For these experiments, we make the conservative asump-
tion that the PIM processor runs at half the apeed of the
hoat processor. Although the inherent spesd of the logic is
no slower [13], we make this assumption becanse the sub-
components of the PIM processing logic run in lock-step, 20
the resulting clock spesd is slower than that of superscalar
gehemes,

4.3 Performance Compared Against Host

Figure 10 summarizes 1-PIM performancs as comparsd
to execution on the conventional host processor. Five of
the eight programs speed up significantly compared against
host execution, two remain about the same, and one pro-
gram is slowed down. (All programs spesd up when multi-
ple PIMs are used)) Owerall, the average speedup is 38X,
Several factors contribute to these speedups, including the
loweer memory stall times on the PIM nodes and the bene-
fits of the WideWord unit in exploiting fine-grain parallelism



Program LOC Description SO Daita Set Size WideWord Usage
Temp ke #13 () mage cormelation ST TRyt image, parallelism, selective,
Matching 32 l-Khvte templates reuse in registers,
(TN e mode
Cornerturn 177 (C) matrix transpose Atlantic J2-Mbrvte matrix parallelism,
1CT) Aerogpace permutation
OG BaT gparse conjuzate NAS ZM double parallelism, floating
(FORTRAN) gradient precigion elements point, page mods
Transitive 20 (C) Flowds all pairs Atlantic 256 Klhytes parallelism,
Closure (TC) shortest paths AeToapace selertive,
reuse i registers
Natural Join 15144 (C) refational database | Alphatech T2 Rhotes
(NI Join
Nedzhborood 200 () IMAZE Processing Atlantic 00,000 bytes
(NH) stencil Aeroapace
Painter (P 22 () random wall Atlantic 4 Mbotes
Aercspace
D07 =000 (T object=criented University of m58 Kbytes
datalsise query Wisconsin

Table 1: Application description.

and taking advantage of page-mode memory aceessea, The
remainder of this section examines these Actors in detail,

4.0

12.0

10.0

a.0

8.0

Speedup over host-only

4.0

20

0.0

TM-F CT-P C@-P TGP  MN-P NHP PP 00T

Figure 10; Spoedups over host-only ecoecuiion,

4.4 Reduction in Memory Stall Time

Figure 110a) shows the memory stall times of host=only
execntion., PIMs reduce memory stall time in two ways:
(1) lower latency to memory; and, (2) higher bandwidth
to memory through wide loads and stores, (A third redues-
tion ocours as a result of coarse-grain parallelism across the
FIMs, which i3 not discussed in this paperd We see from the
figure that five of the eight programs spend more than 400
of their time stalled in memory aceesses, DIVA achieves a
reduction in memory stall time for thess five programs rang-
ing from 1320 for Natural Join to 95% for Cornerturn, as
shown in Figure 11k

The host wversion of Template Matching (TM-H) has a
memory stall time of only 3% of its total execution time
The data set size of this application fits in the L2 cache, and
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the working set of each loop fits in the L1 cache; therefore,
the data rense exhibited by TM is effectively exploibed, Even
though TM-H does not suifer from larze memory stall times,
the L-PIM version (ThI-F) has even smaller stall times dus
to the high data bendwidth at the PIM node, The use of the
WideWord unit for loading /storing and operating on 256-hit
objects, plus the rewse of data in WideWord registers reduces
the memory stall time to 2006 of that of TM-H.

Cornerturn has a memory stall time of 90,17% when run-
ning on the host. This application has very little tempo-
ral reuse, since each matrix element is accessed only twice
{one read and one write) during the matrix transposes, Thus
primarily spatial reuse i exploited in cache, and each new
cache line 8 only reused a few times, In the PIM version,
the WideWard datapaths also exploit the available spatial
rense, Furthermaore, the WideWord loads/stores and opera-
tions on 8 matrix elements at a time also reduce the number
of accesses to memory, Finally, the atency seen by the PIM
processor (Average of LLAT eyeles, sinoe most of the accesses
are in random moede) 8 much lower than that suffersd by
the host. The combination of these fctors reduce the CT-P
memory stall thne to L32% of that of CT-H.

CG al=so benefits from the lower memory latencies on the
PIM node, Since the data st sime does not fit in the host
caches and the irresular acoess patterns cause conflict misses,
OG- spends #5.21% of its execution time stalled due to
cache misses, Although most of the misses are satisfied at
the L2 eache (5132%), 46% of the stall time is due o ac-
cesmes bo the DRAM, On the PIM, 8% of the memory ac-
cesEes ane page-mode ascesses, and the average lateney seen
by the processor is only 591 cyeles.,

Transitive Closure on the host, TC-H, spends T0% of its
execution time stalled due to cache misses, with 47.14% of
the misses satisfied ab the LL and 5281% satisfied at the
L2, resulting in an average miss latency of 623 eveles, For
TC-Fy the average memory latency is 547 cycles, due to
G700 of page-mode accesses, In addition to lower memory
latencies, TC-FP also has a smaller number of memory ac-
cesges ginee the WideWord unit is wsed to tramsfer the data
toyfrom memnory and perform the computation, The use of



the WideWord unit regults in the added benefit of exploiting

BUSY
gpeitial rense, since the matrix is accessed with stride one in a0 H MEM STALL
the row dimension. T

Neighborhood shows an increase in memory stall time he- w e .
cauze the data fits in cache, and thus the memory latency JER
at the PIM is larger than that of the host. The increase Z mw
in memory stall time plus the fact that the PIM processor B
runs at half the speed of the host result in a slowdown with =
regpect to host-only exocution. E o
Pointer has nospatial reuse and little temporal reuse, and =m0
ginee the data set sime i larger than the L2 cache, P-H stalls E s
for memory for 490.8% of its execution time, with most misses =
satisfied at the DRAM. P-P Las rouglly the same nunber = b
of loads and stores, but the average latency seen by the 00
FIM 8 much smaller than the memory atency suffersd by
the host, even though most of the PIM acesses are random- 1o
mode accesses, o TMH GCTH C&H ToH HNFH  FEH  PH  0o7H
Natural Join exhibits little temporal reuse and high cache
misgs rates, even though the data set size fits in the L2 cache, a) Busy and memory stall times for host-only execution.
MI-F shows a reduction of 158% in memory stall times due
to the lower average lateney seen by the PIM processon. Hemn
00T also has almost no temuporal reuse and OO0T-H suffers 1200 L2 STALL

REMETALL

from a large amount of cache misses, On the PIM version
the memory stall time is redueed by 62,57, again a8 a result -
of the smaller on=-chip latency. ’

4.5 Benefits from WideWord and Page Mode

To izolate the benefit of the WideWeord unit, we compare
gealar versions against versions tuned to take advantage of
Ehe WideWord unit and page-mocke memory aceesses for the
four programs that utilize the wide datapatha, These results
are shown in Figure 12, Speedups are significant, ranging
from L19X for OG up to 17.06X for TA, with an averaze
improvement of 995X, The features of the nstruction set 2.0
that are exploited are swnmmarizesd in the final column of
Table 1, and described ag folloms, L

TM computes theee correlation values bebwern an image Y 2 2 WA R
and each of 32 templates, each correlation corresponding to "’)’t&q & 00)33 ‘O%‘Q ‘Jb"g “# TS
a loop nest. The DIVA implementation, which is described .
in detail in 6], takes advantage of the nherent fine-grain bx) Host-only and 1-PIM memory stall times.,
parallelism by operating on 32 #hit mage pixels and 32
Sbit template elements at a time, Sinee a template is rep- Figure 11; Memory stall times,
regented a8 a 32-by-32 matric of S-bit elements, an entire
template row fits into one WideWerd register. Also, since
the innermest loop traversss one template row, the entire 150
imner loop computation is twansformed nbo a ssquence of
WideWord operations on one template row and 32 pixels L
of an image row, efectively elimipating the innermost loop,
The accwnulation of the pixel values is aclieved by a parallel
reduction sum, using permutation operations as in Figure G,
and the result of the reduction sum is added to the correla-
tion value using selective execution as in Figure 8. To exploit
temporal reuse in WideWord rezisbers, we applicd common
loop transformations, particularly unroll-and=jam (4], In ad-
dition, we exploited spatial reuse by shifting an mage sub-
row held in a WideWord register by one pixel, to move the
window of the mmage to bhe compared against the template, e
Further performande improvements are ahiainesd by reorder-
ing memory acoesses and grouping streaming accesses to the
denge arrays to achieve page-mode memory aceess latencies, 0o

Host and PIM mgmory stall imes
2

Q.

wna

140

120

00

80

B

Speadup of wide over scalar

20

The CT mmplementation performs a Lierarchical n-place e e e rer
matrix transpose where the smallest submatrices, of size . .
B, are transposed in WideWord registers, Each S8 sub- Figure 12 Speedup of WideWord vs. scalar.

292



miatriz is loaded mto the WideWord register file (an 8:x8 ma-
trix with 32-bit elements requiring 8 WideWord registers),
and transposed via a sequence of permutation operations.
The transposed submatriz 8 then stored back in memory.
This implementation takes advantage of the large capacity
of the WideWord register file, avoiding loads and stores to
memory during the transpose of each 508 submatrix.

OO0 ke computation is a sparse matris-vector multiply.
D £0 the miged rezular/irregular pature of data accesses,
we only exploit fine-grain parallelism in the WideWord unit
for the regular portions of the computation. The dense
vertor acpesses are loaded mto WideWord rezisters, and
the dense vector multiplies are performed in the WideWord
flositing=point unit. The accwnulates into the spars: matrix
are performed sequendially, Selective execution is used to
geloct the field of the WideWord operand that participates
in the operation. As in TA, we also reordered memory ac-
oe=aes to achieve page-mode ktencies on the dense arrays,

TC usges a dense matrix to represent the distamee grapln
It exploits fine-grain parallelizm by performing Wide Word
arithmetic operations on cizht 32-bit elements of the matrix
that are held in WideWord regisbers,  Selective execution
using WideWord operation wmrgec merges the contents of
two WideWord registers according to condition-code bits,
allowing an efficient computation of the minimum value of
each pair of elements of two WideWord operands, Similar
to TAL, we use uwnroll-=and-jam to obdain temporal rewse o
the WideWord register file,

5. STATUS

The first DIVA PIM prototype, shown in Figure 1, i8 an
SRAM-beiged single-node imnplementation of the DIVA PIM
chip architecture and is currently in test, To minimize sili-
con area of this SRAM-Eased prototype, we used a 1-Mbyte
memory macre. For comparison, a DRAM-lased implemen-
tation with a 2-Mbyvte macro could T fabricated in approx-
imately hall the area of the SRAM-based prototype. The
current prototype chip bnplements all features of the DIVA
PIM architecture except address translation and fleating-
point capabilities, A second wersion of a PIM chip, which
not only integrates these functions but achieves a faster clock
rate, 8 due to tape out in the second hall of 2002,

The current chip was fabricated through MOSIS i TSMC
& techmology, and the silicon die measwres 98 ona
gide, It containg approcimately 2 million logic transistors in
addition to the 53 million transistors that implement 8 Mhits
of SRAM. The chip also contains 352 pads, 240 signal [0,
and is padkazed in a 35mm BGAL Much of the logie was syn-
thesized with Synopeys Design Analyeer, and the entire chip
was placed and routed with Cadenos Silicon Ensemble, The
IP building blodks used in the chip include Artisan standard
cells and register files, Virage Logic SRAM, and a NurLogic
FLL clock multiplier.

The chip is cwrently being tested for functionality with
the use of pattern generators, which apply test vectors to in-
put ping, and logic analyser moduoles, which sense the out-
puta, Although exhaustive testing Las not wet been com-
pletedl, the chip is correctly executing at 1G0MHz ocn the
Cornerturn matrix transpose kernel deseribesd in Section 4,
exercising all major control and datapaths within the PIM
processing logie, including the WideWord permutation unit.
Even in this limited test setup, the chip performs 1,28 GOPS
while dissipating only S0maW. In addition to the process-
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ing lozic functionality, correct operation of parcels transiting
through the PIRC has also been verified,

We will soon bezin integrating PIM-based DIMM: intoa
workstation-class development system, incorporating com-
piler and system software techmolozy, For the Lost operating
gyvatem, we have augmented Linux to nclude PIM-specific
support, such a8 loading PIM code and data, booting, pro-
cess managenent, and the memory management functions
outlined in [L0]. We have alse developed components of the
PIM run-time kernel, an augmented version of the RTEMS
open=gource real-time cmbedded operating system, We Lawve
developed a prototype compiler for the DIVA PIOVMSE, which
tales as input sequential Fortram or € code, and produces
DIVA exerutables that exploit both the sealar and Wide-
Word unit. We leverage the SUIF compiler, including ex-
tensions deseribed i (18] and our own implementation of
transformations described in 6], and a GOC backend for
the PowerPC AltiVes, A svateme-level compiler i an area of
future work.

6. RELATED WORK

The DIVA system architecture is focused on achieving the
follewing four geals: (L) developing PIMs that can serve as
the only memory o the syvsbem, assuming the dual roles of
“smart memories” and conventional memory; (2) supporting
a wide range of familiar programming paradizms, closely re-
lated to parallel computing: (3) targeting applications that
are severely impacted by the processor-memory bottlenecks
in conventional syatems: sparse-matrix and pointer-bazed
applications with rregular memory access patterns, and -
age and video applications with large working sets; and, (4)
developing a VISI device to exploit memory and oomom-
nications bandwidth in PIM-lesed systems while making
efficient use of on-chip resources for tarzet applications,

These four goals distinguish DIVA from other PIM-based
architectures, Integration into a conventional system affords
the simultaneous benefits of PIM technolony and a state-of-
the=art host, vielding high pesformance for mioed workloads,
Sinee PIM processors are usually less sophisticated due to
on-chip space constraints, systems using PIMs alone inoa
mnltiprocessor may sacrifice performance on uniprocessor
computations [12, 16, 25, 27], while system-on-a-chip golu-
tions (e, the TRAM 22 and the Mitsubishi M3ZR,/Tx 200
limit the application domain. DIVA™s support for a broad
range of familiar parallel programming paradizms, including
task parallelism for irregular computations, distinguishes it
from systems with restricted applicability (such as to SIND
parallelism 7, 8, 2200, as well as thoss requiring a novel pro-
gramuning methodelogy or compiler technelosy to configure
logie (L], or to manage a complex memory, computation and
commmnication hierarchy (15, DIVA's PIM-to-FPIM mter-
connect mproves upon approaches that serialise comomi-
nication through the host, which decreases bandwidtlh by
adding traffic to the protessor-memory bus 8, 21].

With respect to DIVA's WideWord unit, Table 2 com-
pares the features described in Section 3.2 with two come-
mercial multimedia extensions that support superword par-
allelizm, PowerPC AltiVee and Intel S5E2, as well as a pre-
vious ressarch design callesd ASAP (2], (Most other multi-
media exctensions support swwerd parallelism, which per-
forms parallel operations on subficlds of a machine word,)
The ASAP combines WideWord and sealar capabilities in
A gingle unit. This appreach eliminates the need for frans-



Capability s o) Altivec | A=A DIIVA

SepATatE SrElar

WideWord units W W s W

Permutaticn unediate | zeneral | zeneral | general
indirect

Hemister

transfers v s n/a v

et

EREIEEDT BEmuitad limited v v

Table 2: Comparison with other superwond-level
parallelism approaches,

fers between register files, but with register forwarding, it
can complicate the pipeline and slow dowmn the clods rate,
All other implementations have separate scalar and Wisde-
Word units and register files, and other than DIVA, only
S5E2 includes tranafers betwesn resister filess The abaence
of such capability was reported to e a performance bottle
neck in the AltiVee (18], AltiVee and ASAP support only
general permutations, where permutation woectors are read
from memory or constructed by instructions. Both S5E2
and DIVA can avold these costs of deriving a permutation
vertor through hardwired permutation operations, In the
case of SSE2, permutation operations g only be expressed
through umediates, so the permutation must be knosn at
compile time, DIVA™S hardwired permnutation, which is in
addition to general permutation, 8 indirect bemause it ref-
erences a slar register. Hardwired indizect permutations
are more powerful than immediate permutations, in that
we can use nearby permutations for different iterations of
a loop without requiring unrolling (e, to do aligmnent),
DIVA provides a detailed reference desizn and implementa-
tion of selective execution, related to the concept discussed
in 2], that supparts selective execution in almost every wide
instruction. By comparizon, sinee the AltiVee does not in-
corporate selective exerution of arithmetic operations, to ac-
complish the same result a8 in Figure S on the AltiVec would
require an additional instruction to commit only those fields
of the result of the add for which the condition code is s
We further consider a performance compearison with the
PowerPC AltiVes T4XX, Even with a very ageressive DRAM
technolozy, the TAXX can achiewe a peak main memory
Bendwidth which is only one third that of the PIM DRAM.
While the T4XX has better bandwidih for problems which
fit into the ZH6KEB on-chip L2 cacle, for our benclunarks
with high memory stall thnes, a single DIVA PIM processor
will outperform the AltiVee despite a much smaller tansis-
tor count on a DIVA PIM. Further, sinee sach DIVA svs-
tem will include many interconnected PIM chips, the perfor-
mance advantaze will scale with increasing memory size for
problems amenable to coarse-grain parallel computation.

7. CONCLUSION

This paper Lag presented a defailed deseription of the
DIVA PIM microarchitecture, We discuss some of the issues
that must be considersd in future architectures for exploit-
ing memory ndwidth, pacticularly the memory interface
and controller, instruction set features for fine-grain paral-
lel operations, and mechanisms for address translation. We
present simulation results on eight programs, demonstrat-
ing an average specdup of 23X a3 compared o a convens-
tional host. The speedups are due to up to 95% reduction
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in memory stall time, and, for four of the programs, an av-
erage gpeedup of WO3X due to fine-grain parallelism in the
WideWord unit as compared to scalar PIM execution, Asa
result of these effects, six of the programs show fairly siznif-
icant speedups over host=only execution with just one PIM,
even though the PIM processor is an in-order, single-issue
proceEsor running at half the speed of the host, which is
an out-of-order 4-issue processor. Thess L-PIM speedups
sugzest DIVA's potential to outperform conventional multi-
proceasors for certain applications, and at a much reduced
lardware cost,

Acknowledgments

The authors wish to thank Peter Kooze and Jay Brockman
at the University of Notre Dvme for their contributions to
the desizn of the DIVA PIM micrearchitectures, and Thomas
Sterling for his early contributions to the project. The au-
thors also wish to admowledze the work of others previously
on the DIVA team at USC/TST whe sontributed in some way
to the work described in this paper, ineluding Jeff Koller,
Michae]l Gorman and Ruoming Pang, The DIVA project is
gpongored by DARPA contract F30002-06-2-0150,

8. REFERENCES

1] I Babb et al, Parallelizing applications into silicon. In

Proceedings of the JEEE Workshop on FPGAs for

Custom Computing Machines, Apr. 1999,

J. Brockman et al, Microservers: A new memaory

semantics for massively parallel computing, In

FProceedings of the ACM International Conference on

Supercomputing, pazges 454453, June 1990,

D, Burger, J. Goodman, and A, Kagh, Memory

Eandwidth limitations of futwre microprocessors. In

Proceedings of the 27 Armuad International

Smpesium on Computer Architechare, pages T5—5,

May 199G,

&, Carr and K. Kennedy, Improving the ratio of

memory operations to floating-point operations in

loopa, ACM Tronsactions on Progrommeng Longuages

and Systems, La(3:400-462, July 1904,

Jo Carter et al. Impulse: Building a smarter memory

controller. In Proceadings of the Fifth Fudernationad

Symposium on High Performance Computer

Amhdtecture, pages TO-T9, Jan., 1900,

Ju Chame, M. Hall, and J. Shin. Code transformations

for exploiting bandwidth in PIM-bassd systems, In

Proceedings of the JSCA Wordshop on Sohwing the

Memery Wall ProlWlem, Juze 2000,

Dn Elliott et al. Computational RAM: Inplementing

procesEoes in memory. JEEE Design and Test of

Computers, pages 32-41, January — March 1999,

& ML Gokhale, B, Hobmes, and K, [obst, Processing in
memory: the Terasvs massively parallel PIM array.
IEEE Computer, pages 2351, Apr. 19605,

o9 ML Hall et al. Mapping irrezgular applications to DIVA,
a PIM-bassd Data-Intensive Architecture, In
Proceedings of Supercomputing, Nov, 1999,

100 ML Hall and C, Steele, Memory management in a
PILI-tesed architecture, In Proceedings of the
ASPLOS Workshop on Intelligent Memory System.s,
N, 2000,

2

[



L] T, Hennessy and I, Patterson, Computer Architechure:
A Quantitative Approcch. Morzgan Kaufman, 2 edition,
199G,

12] IBML hitpe//researchwebswatsomaiban oo,/ bluegene/.

L3 IBM Microelectronics, hitpe//www.ehipaiboueom)
products/asies, products/ edram,

4] G0 W, Kang and I, Dreaper, A fast, simple router for
the Data-Intensive Architecture (DIVA) systen In
Proceedings of the IEEE Midwest Sympesivm on
Chrowits and Systerms, Aug, 2000,

L3 Y, Kang et al, FlexBAM: Toward an advanced
intellizent memory system., In Proceedings of the IEEE
International Conference on Compaer Design, Oct,
1909,

16] P Kogge, The EXECUBE approach 1o massively
parallel processing. In Proceedings of the Felernotonal
Conference on Parmilel Processing, Aug, 1994,

17] P Kogee, T, Giambra, and H. Sasnowitz. RTAIS: An
embedded parallel processor for real-time decision
aiding. In Proceedings of NAECON, Mar. 1905,

18] 5. Larsen and 5, Amarasinghe, Exploiting
guperword-level parallelism with multmedia
instruction sets, In Proveedings of the ACK
Conference on Programmaing Longunges Design and
Implementation, 2000,

19] K. Lee, Subword parallelism with MAX-2, [EEE
Micro, 16(4:51-59, Aug. 1996,

20] Mitsubishi, httpe//www.nitsubishi-
chips.com/data/ datasheets /moeus,/ m32rdgrphiml.

21] M. Oskin, F. T\ Chong, and T. Sherwood. Active
pazes A model of computation for intelligent memaory,
In Proceedings of the 25th Annuad Internmional
Symposium on Computer Anchateciure, June 19696,

295

¥ D Patberson ot al. A ease for intelligent DRAM:
IRAM. JEEE Micre, Apr. 1997,
2% P. Ranganathan, S, Adwve, and N. Jouppi.
Performance of image and video prooessing with
general-purpose processors and media [SA extensions,
In Proceedings of the 26th Annual Internationa
Sympesiun on Compder Architechsre, May 1990,
Riee University, hitpe// www-eoerioeedu rein.
AL Saulsbury, F. Pong, and A. Nowatzyle Missing the
memory wall: The ease for processor/ memory
integration, In Proveedings of the 23vd Anpua!
International Symposiun on Computer Archidectore,
May 109G,
AL Saulsbury, T, Wilkinson, J. Carter, and A, Landin,
An argument for simple COMAL In Proceedings of the
Symposium on High-Performance Compader
Armchatecture, Dee, 1965,
27 . Sterling., An introduction to the Gilgamesh PIM
architecture, In Buwre-Por, pages 16-32, Aug, 200L
28 L. Sunaga ot al, A processor in memory chip for
massively parallel embedded applications, TEEE
Jowrnad of Salid State Circuits, pages 1550-1550, Oct,
1N,
T. von Eicken, D Culler, 5, C. Goldstein, and
K. Sclauser, Active messages: a methanism for
integrated communication and computation. In
Proceedings of the 1ML Annuead Fnfernationnd
Sympesiun on Compuder Architechsre, May 1992,
J. Zawodny, Po Kozze, I, Brodkman, and E. Johnson
Cache-in-memory: A lower power alternative, In
Proceedings of the JSCA Wordshop on Power-Diiven
Microorchitecture, June 1963,

2

24



Implementation of a 32-bit RISC Processor for the
Data-Intensive Architecture Processing-In-Memory Chip

Jeffrey Draper, Jeff Sondeen, Sumit Mediratta, Thn Kim
University of Southern Califorma Information Sciences Institute
draper@isiedu, sondeen@isiedu, sumitm@isl.edu, thnk@usc.edu

Abstract

The Data-Intensive Architecture (DIVA) system employs Processing-In-Memory (PIM)
chips as smart-memory coprocessors to a microprocessor,  This architecture explodts smherent
memery handwidth both on chip and across the spstem to target several classes of handwidih-
limited applécotions, @cluding multimedia appliotions and poider-based and sparse-matrie
comgmetations,  The DIVA project & buddimg a prototype workstation-class system using
PIM chips in place of standard DREAMs to demonstrate these concepts. We have recently
comgieted initial testing of the first vergion of the prototype PIM deviee.

A key comporent of this archédecture 45 the scalar processor that coordinates all activ-
iy withéin a PIM node, Sénce such a component is present in each PIM node, we explot
paralielism to achicve significand speedups mather than relyping on costly, hioh-performance
processor deségn, The resulling soalar processor i3 then an in-order 32-bit RISC mécrocon-
trofler that és extremely area-efficiend, This paper details the design and implemendation of
this scalar processor i TSMC 0. 18pm dechalogy, In compunction wih other pulioetions,
this paper demonstrates that fmpressive geins aom be achievad wigh very fddle “smart” logic
addad to memory devices,

1 Imtroduction

The increasing gap betwoon processor and memory spoeds is a well-known problem in
computer architecture, with peak processor performance increasing at a rate of S0-60% per
year while memory acoess times improve at merely 5-T%. Furthermore, techiiques designed
to hide memory latency. such as multlthreading and prefetching. actually nerease the
memory bandwidth requirernents [2]. A recent VLSI technology trend. embedded DRAM.
offers a promising solution to bridging the processor-memory gap [9. Omne application
of this technology mtegrates logic with high~density memory n 4 processing-in-nemnory
(PIM) chip. Because PIM internal processors can be directly connected to the memory
banks. the memory bandwidth is dramatically increased (with hundreds of gigabit /second
ageresate bandwidth available on a chip—up to 2 orders of magnitude over conventional
DRAM systems), Latency to on-chip logic s also reduced, down to as little as one half
that of a comventional memory system, because internal memory accesses avold the delays
associated with communicating off chip.

The Data-Intensive Architecture (DIVA) project leverages PIM technology to replace or
augment the memory system of a conventlonal workstation with “smart memories” capable
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of wry large amounts of processing. System bandwidth hmitations are thus overcome in
three ways: (1) tight coupling of a single PIM prooessor with an on-chip memeory bank: (2)
distributing multiple processor-memory nodes per PIM chip: and, (3) utilizing a separate
chip-to-chip mterconnect that allows PIM chips to communicate without mterfering with
host memory bus traffic. Although suitable as a general-purpose computing platform, DIVA
gpocifically targets two important classes of applications that are severely performance lim-
ited by the processor-memory bottleneds n conventional systems: multimedia processing
and applications with regular data accesses. Multimedia applications tend to have Little
temporal reuse [12] but often exhibit spatial locality and both fine-grain and coarse-grain
parallelism. DIVA PINMs exploit spatial locality and fine-grain parallelism by accessing and
operating upon multiple words of data at a time and exploit coarse-grain parallelism by
spreading independent computations across PIM nodes. Applications with aregular data
acoesees, such as sparse-matrix and pointer-based computations. perform poorly on con-
ventional architectures because they tend to lack spatial locality and thus make poor use
of caches. As a result, their execution s dominated by memory stalls [3]. DIVA acoclerates
such applications by eliminating much of the traffic between a host processor and memory:
simple operations and dereferencing can be done mostly within PIM memorics.

Performance evaluation of many applications has shown that a DIVA platform provides
significant speodups. These resulis as well as thorough descriptions of system architecture
issues have appeared in previous papers [3. 6. T]. Also included in previous publications are
comparisons to other PIM architectures as well as conventional architecturcs. This paper
focuses on the micpoarchitecture design and mnplementation of the scalar processor. or
microcontroller. that coordinates all activity on a DIVA PIM node, Due to area constraints,
the design goal was a relatively simple processor with a coherent. well-designed instruction
set, for which a gee-like compier 5 being adapted. The resulting scalar processor is a
RISC processor that supports single-issue, in-order execution, with 32-bit instructions and
32-bit addresses. Iis novelty Les i the special-purpose functions it supports to interface
to other cucial components of the DIVA design, The processor was fabricated as part
of a DIVA prototype chip in TSMC 0.18pm technology and is currently in test.  The
remainder of the paper 18 organized as follows, Sections 2 and 3 present an overview of
the DIVA system architocture and microarchitecture, to put the scalar processor design
into its proper context, Section 4 desaribes the scalar processor nucroarchitocture in detadl,
Soction & presents details of the fabrication and testing of the scalar proosssor as part of a
PIM <hip. and Section 6 concludes the paper.

2 System architecture overview

A driving principle of the DIVA system architecture s efficient use of PIM tochnology
while requiring a smooth migration path for software, This principle demands integration
of PIM features into conventional systems as seamlessly as possible. As a result, DIVA
chips are designed to resemble commercial DRAMs, enabling PIM memory to be accessed
by host software as if it were conventional memory. In Figure L. we show a small set of
PIMs connected to a single host processor through conventional memory control logie,

Spawning computation, gathering results, synchronizing activity. or simply acoessing
non-local data is accomplished via parcels. A pareel is closely related to an active mes-

gage as it 18 a relatively lghtweieht communieation mechanism ocontaming a reference to
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Figure 1. DIVA system architecture

a function to be imvoked when the parcel is received [14]. Parcels are distinguished from
active messages in that the destination of a parcel is an object In memory. not a spocific
processor. From a programmner’s view, parocls, together with the global address space sup-
ported i DIVA, provide a compromise between the ease of programming a shared-memory
gystem and the architectural simplicity of pure message passing, Parocls are transmitted
thromgh a separate PIM-to-PIM ntereonnect to enable communieation without mberforing
with host-memory traffic, as shown in Figure 1. Details of this inferconnect may be found
in [11]. and more details of the system architecture may be found in [5. 6. 7.

3 Microarchitecture overview

Each DIVA PIM chip is a VLSI memory device augmented with general-purpose com-
puting and networking/communication hardware. Although a PIM may consist of multiple
nodes, cach of which are primarily comprised of a few megabyies of memory and a node
processor. Fieure 2a shows a PIM with a single node, which reflects the focus of the mital

. . Memory [ I
To Nelghboring PIM : ‘ I ‘
Processing ‘ |
Logic i I
PBUF | Memory Port f o
Parcel | e |
PIM Routing - . 1
Compoment Interconnect PIM Memory Bus i |

(PIRC)

PBUF | Memory Port
Host Interface

; Ta Host Syst
T Neighboring PIM th'?em?;v lsl':”-'

a) Chip organization b) Microphotograph of die

Figure 2. DIVA PIM chip
research that Is being conducted. Nodes on a PIM chip share a single PIM Routing Com-

ponent (PIRC) and a host mterface. The PIRC is responsible for routing parcels between
on=chip parcel buffors and neighboring off-chip PIRCs, The host mberface mnplements the

298



JEDEC standard SDRAM protocol [10] so that memory acoesses as well as parcel activity
indtiated by the host appear as conventional memory acossses from the host perspective.

Figure 2a also shows two interconnects that span a PIM ¢hip for information flow be-
tworn nodes, the host interface, and the PIRC. Each mterconnect 1s distinguished by the
type of mformation it carries. The PIM memory bus is used for conventional memory ac
cisses from the host processor, The parcel interoonnect allows parcels to transit between
the host mterface. the nodes. and the PIRC, Within the host interface a parosl buffer
(PBUF) is a buffer that is memory-mapped into the host processor’s address space. per-
mitting application-level communication through parcels. Each PIM node also has a PBUF.
memnory-napped into the node's local address space.

Figure 3 shows the major control and data connections within a node, The DIVA PIM
node processing logic supports smgle-issue, m-order execution. with 32-bit instructions
and 32-bit addresses. There are two datapaths whose actions are coordinated by a smgle
exerution control unit: a 32-bit scalar datapath that performs operations similar to those
of standard 32-bit integer units. and a 256-bit WideWord datapath that performs fine-
grain parallel operations on 8, 16-. or 32-bit operands. Both datapaths execute from a
gingle instruction stream under the control of a single S-stage DLX-like pipeline [8]. The

Memory Port

WideWord Datapath
(Register file, ALL, etc)

Scalar Datapath
(Register File, ALL. etc)

2

emory Bus Instruction Pipeline Execution
Control & Cache Control Unit
Arbiter .

w4 dress/Control
— Data

Parcel Buffer (PBLTF)

Figure 3. DIVA PIM node architecture

instruction set has been designed so both datapaths can. for the most part. use the same
opeodes and condition oodes. generating a large functional overlap. Each datapath has its
owll independent general-purpose register file. 32 32-bit registers for the scalar datapath
and 32 256-bit registers for the WideWord datapath. but special instructions permit dirvect
transfers betwern datapaths without going through memory, Although not supported in
the mitial DIVA prototype, floating-point extensions to the WideWord wnit will s provided
in future systems, In addition to the execution unit and associabed datapaths. each DIVA
PIM node contams other essential components of note, Deseriptions of these components
a8 well a8 the WideWord datapath will appear in future publications.
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4 Microarchitecture details of the DIVA scalar processor

The combination of the execution control unit and scalar datapath is for the most part
a standard RISC processor and serves as the DIVA scalar processor, or microcontroller, It
coopdinates all activity within a DIVA PIM node, including SIMD-like operations in the
WideWord datapath. inferactions betwoen the scalar and WideWord datapaths. and paroel
communication. To avoid synchronization overhead and compiler issues associated with
coproocssor designs and also design complexity associated with superscalar interlocks. the
DIVA scalar proossor was designed to be tightly mtegrated with other subcomponents. as
described mn the previous section. This characteristic lod to a custom design rather than
augmenting an off-the-shelf embedded IP core. This section describes the microarchitec-
ture of the DIVA scalar processor by first presenting an overview of the mstruction set
architecture, followed by a description of the pipeline and discussion of special features,

4,1 Imstruction set architecture overview

Much like the DLX architecture [8]. most DIVA scalar instructions use a thres-operand
format to specdy two source registers and a destination register. as shown in Figure 4,
For these types of instructions, the opeode generally denotes a class of operations. such as
arithmetic, and the function denotes a specific operation. such as add. The C bit indicates
whether the operation performed by the nstruction execution updates condition codes,
In Lieu of & second source rezister, a 16-bit mmediate value may be specified. The scalar
instruction set includes the typieal arithmetic functions add, subtract. multiply. and divide:
logical functions AND, OR. NOT. and XOR: and logical /arithmetic shift operations. In
addition. there are a number of special instructions, described in Section 4.3. Load/store
instructions adhere to the immediate format, where the address for the memory operation
18 formed by the addition of an immediate value to the contents of rA. which serves as a
base address. The DIVA sealar processor docs not support a base-plus-register addressing
maode because 1t roquires an extra read port on the register file for store operations.

Ficld Widths (in bits)
G i) i) a2 1 4 i)
| opeode | > | A | B |C| reserved | function |
Format R for register operations
(1] i) o 16
| opeode | D | A | immediate |

Format I for immmediate operations
Figure 4. DIVA scalar arithmetic/logical instruction formats

Branch mstructions use a different format (not shown due to page constraints). The
branch target address may be PC-relative. useful for relocatable oode, or caleulated using
a base register combined with an offsef, useful with table-based branch targets. In both
formats, the offset 1s In units of mstruction words. or 4 bytes. By specifving the offset in
instruction words. rather than bytes. a larger branch window results. To support function
calls. the branch instruction format also includes a bit for specifying linkage. that is. whether
a return mmstruction address should be saved m R31. The branch format also includes a
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3-bit condition field to specify one of elght branch conditions: always, equal not equal. less
than less than or equal. greater than, greater than or equal. or overflow.

4.2 Pipeline description and associated Hazards

A more detalled depiction of the pipeline exerution control unit and scalar datapath are
given in Figure 5. The pipeline is a standard DLX-like -stage pipeline [8]. with the follow-
ing stages: (1) mstruction fetch: (2) docode and register read: (3) execute: (4) memory: and.
(3) writeback, The pipeline controller contains the necessary logic to handle data. control,
and structural hazards. Data hazards ocour when there are read-after-write pregister de-
pendences between instructions that co-exist i the pipeline. The controller and datapath
contain the nocessary forwarding. or bypass. logic to allow pipeline execution 0o procesd
without stalling in most data dependence cases. The only exception to this generality in-
volves the load instruction. where a “bubble” is inserted between the load instruction and
an mmediately following instruction that uses the load target register as one of its source
operands. This hazard is handled with hardware interlocks. rather than exposing it, to be
compatible with a previously developed compiler.

F = Timrrdtion — — Deodesmg - — ———————T——=—==—=—==—=—-= -
I Fetch Register Read Execute Memory Writeback |
I To/From |
| To/F WideWord I
o/From
| B ]n:at_l'uuim I | | S — I
12| ¢ ache > Register Memory I
NEL, L File (32 4 L, |
1| £ [ words X :
I 5‘ 32hit) .
I ; A A |
; |
; |

Scalar Datapath

i R f f t

Pipeline Controller
(Stall logic, hazard detection and resolution, etc)

Figure 5. DIVA scalar processor pipeline description

Control hazards ocour for branch instructions. Unlike the DLX architecture [8], which
uses explicit comparison mstructions and testing of a general-purpose register value for
branching decisions. the DIVA design incorporates condition codes that may be updated
by most nstructions. Although a shghtly more complex design, this scheme obviates the
need for several comparison instructions i the instruction set and also requires one fower
instruction execution in every comparison,/branch sequence. The condition codes used for
branching decisions arc: EQ - set if the result is zevo, LT - set if the result is negative,
GT - set if the result is positive. and OV - set if the operation overflows. Unlike the load
data dependence hazard. which is not exposed to the compiler, the DIVA pipeline design
imposes 4 1-delay slot branch. so that the mstruction following a branch imstruction is
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always exoecubed. Since branches are always resolved within the second stage of the pipeline.
no stalls eocur with branch mstructions, The delayed branch was selectod bocause 1t was
compatible with a previously developed compiler.

Since the general-purpose register file contains 2 read ports and 1 write port. 1t may
sustain two operand reads and 1 result write every clock cyele: thus, the register file design
introduces no structural hazards. The only structural hazard that impacts the pipeline
operation is the node memory, Pipeline stalls oocur when there is an instruction cache miss,
The pipeline will resume once the cache fill memory request has boen satisfied. Likewise,
gince there is no data cache, stalls ocour any time a load/store instruction reaches the
memory stage of the pipeline until the memory operation is completod.

4,3 Special features

The novelty of the DIVA sealar processor liee In the special features that support DIVA-
specific functions. Although by no means exhaustive, this section highlights some of the
more notable capabilities,

431  Run=time kernel support

The execution control unit supports supervisor and user modes of processing and also
maintains a number of spocial-purpose and protected registers for support of exoeption
handling, address translation, and general OS serviees. Exoeptions. arising from execution
of node nstructions. and interrupts, from other sources such as an imternal timer or ex-
ternal component like the PBUF, are handled by a common mechamsm. The exosption
handling scheme for DIVA has a modest hardware requirement. exporting much of the
complexity o software. 0 maintain a flexible implementation platform. It provides an
inbegrabed mechanism for handling hardware and software exeeption sources and a flexible
priority assignment scheme that minimizes the amount of time that exception recognition
18 disabled. While the hardware design allows traditional stack-based exception handlers.
1t also supports 4 non-recursive dispatching scheme that uses DIVA hardware features to
allow precoiption of lower-priority exoeption handlers,

The impact of run-time kernel support on the scalar processor design 18 the addition
of a modest number of special-purpose and protected (or supervisor-level) registers and
a non-negligible amount of complexity added to the pipeline control for entering/exiting
exception handling modes cleanly, When an exception is detectod by the scalar processor
control unit. the logic performs a number of tasks within a single clock cyele to prepare the
processor for entering an exeeption handler in the next clodk cyle. Those tasks melude:

& determining which exception to handle by prioritizing among simultaneously occour-
ring «xXoeptlons.

& setting up shadow registers to capture critical state information, such as the processor
status word register. the instruction address of the faulting mstruction. the memory
address if the exception is an address fault, ote,

& configuring the program counter logic o load an exoeption handler address on the
next clock eyele, and

& setting up the processor status word register to enter supervisor mode with exoeption
handling, temporarily disabled.
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Omee invoked. the exception handler first stores other pieces of user state and nterrogates
various pieces of state hardware to determine how to proceod. Onee the exception handler
routine has completed, it restores user state and then executes a return-from-exception
instruction. which copies the shadow register contents back into various state registers to
resume proossing at the point before the exception was encountered. If it s impossible to
ICSWINe previous prooessie due to a fatal exception, the run-time kernel exception handler
may choose to terminate the offending process.

42  Interaction with the WideWord datapath

Thepe are a number of features in the scalar processor design irvolving communication
with the WideWord datapath that greatly enhanoe performance. The path to/from the
WideWord datapath in the execute stage of the pipeline, shown in Figure 5. facilitates
the exchange of data between the sealar and WideWord datapaths without going through
memory. This capability distinguishes DIVA from other architectures containing vector
units. such as AltiVec [1]. This path also allows scalar register values to be used as specifiers
for WideWord functions. such as imdices for selecting subfields within WideWords and
indices into permutation look-up tables [4], Instead of requiring an mnmediate value within
a WideWord mstruction for specifying such indices, this register-based indexing capability
cnables more intellipent. efficient oode design.,

There are also a couple of mstructions that are especially useful for enabling efficient data
mining operations. ELO. enoode leftmost one, and CLO, clear leftmost one, are instructions
that generate a >-bit Index corresponding 0 the bit position of the lefimost one n a 32-
bit value and clear the lefltmost one in a 32-bit value. respectively. These instructions
ape egpecially useful for examining the 32-bit WideWord condition code register values,
which may be transferred to scalar general-purpose registers to perform such tests, For
instance, with this capability. finding and processing data ltems that mateh a specified key
ape accomplished i much fower instructions than a sequence of bit masking and shifting
involved in 32 bit tests. which is required with conventional processor architectures.

There are some variations of the branch/eall nstructions that also interact with the
WideWord datapath. The BA (branch on all) instruction specifics that a branch is to
b taken if the status of condition codes within every subficld of the WideWord datapath
matches the condition specified in the BA instruction. The BN (branch on none) instrue-
tiom spocifies that a branch is to be taken if the status of condition codes within no subfield
of the WideWord datapath matches the condition specified in the BN imstruction. With
proper code structuring around these instructions, mverse forms of these branches. such as
branch on amy or branch on not all. can also be effected,

433 ©Miscellaneous instructions

There are also several other miscellaneous mstructions that add some complexity to the
processor design. The probe nstruction allows a user to interrogate the address transla-
ton logic to see If a global address 1s locally mapped. This capability allows users who
wish to optimize code for performance to avoid slow, overhead-laden address translation
exceptions. Also, an imstruction cache mvalidate imstruction allows the supervisor kernel to
evict user code from the cache without invalidating the entive cache and is useful in process
termination cleanup procedures, Lastly. there are versions of load /store imstructions that
“lock”™ memory operations. which are useful for implementing synchronization functions,
such as semaphores or barriers,
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5 Implementation and testing of the DIVA scalar processor

The specification of the DIVA scalar processor pequired on the order of 10,000 lines of
VHDL code, consisting of a mix of RTL-level behavioral and gate-level structural code. A
prelminary. unoptinized stand-alone layout of the scalar processor consistod of 23,000 stan-
dard cells (approximately 200,000 transistors) and oocupied 1 sq mm in 018 techmology.
It was progected to operate at 400MHz while dissipating S0mW,

Although the scalar processor 1s suitable for stand-alone embsedded mplementations,
the DIVA project employs it as part of a tightly inteprated node design, as discussed in
vection 3. The scalar processor VHDL specification was included as part of the DIVA
PIM prototype specification, which was synthesized as a “sea of gates” using Synopeys
Design Analyzer. The entire chip was placed and routed with Cadence Silicon Ensemble,
and physical verification. such as DRC and LVS, was performed with Mentor Calibre.
The mbellectual property building blocks used in the chip include Virage Logic SRAM. a
NurLogic PLL clock multiplier. and Artisan standard oclls, pads, and register files,

The first DIVA PIM prototype. shown in Figure 2b. 5 a single-node mplemnentation
of the DIVA PIM chip architecture and is cuwrrently in test. Due to challenges in gaining
acoess to embeddod DRAM fabrication lines m a timely fashion. this first prototype 1s
SRAM-based, This clup implements all features of the DIVA PIM architecture exoept
address translation and floating-point capabaitics. A second version of a PIM chip. which
not only integrates these functions but achioves a faster clock rate. 18 due to tape out n the
second half of 2002, The chip shown in Figure 2b was fabricated through MOSIS in TSMC
0. 18pm technology. and the silicon die measures 9.8mm on 4 side, It contains approoanately
2 million logic transistors in addition to the 53 million transistors that implement 8 Mbits
of SRAM. The chip also contains 352 pads. 240 signal L1/0. and is packaged in a 35mm
TBGA. The ¢hip is estimated to dissipate 2.0W at 1000MHz.

The clup s being tested with the use of an HP 16702A logic analysis mainframe. Pattern
generator modules apply test voctors to the inputs of the chip. and timing/state capture
maoxdules sense the outputs of the chip. The chip is cuwrrently being tested for functionality
at a testbench spoed of SO0z, Although exhaustive testing has not yet been completed,
the chip is running a demonstration application of matrix transpose that esercises all major
control and datapaths within the scalar processor, including many of the special features
highlighted in Section 4.5, Even in this limitod test setup, the chip is performing 640 MOPS
while dissipating only S800mW, We estimate that the scalar processor is contributing only
S0mW to this power measure. Also. though at-speod testing has not been completed yet,
we do not anticipate this prototype to operate much bevond 1000z due to critical path
limitations m the WideWord datapath. If implemented and optimined separately as an
embedded microcontroller, we expect the scalar processor to easily operate above 000Nz,

6 (Conclusion

This paper has presentod the design and implementation of the sealar PIM processor
used i the DIVA system. an integrated hardware and software architeciure for exploiting
the bandwidth of PIM-based systems., Although the core of the scalar processor design is
much like a standard 32-bit RISC processor, it has a number of special features that make
it well-suited to serving as a PIM node microcontroller, A working inplementation of this
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architecture, based on TSMC 0,18mn technology, has provwen the validity of the design., The
resulting workstation system architecture that meorporates PIMS using this processor is
projected to achieve speadups ranging from 8.8 to 383 over conventional workstations for a
mumbser of applications [5. 6]. These results demonstrate that by sacrificing a small amount
of arca for prooessing logic on memory chips, PINM-based systems are a viable method for
combatting the memory wall probleni.
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Abstract

The Data-Intensive  Architecture  (DIVA)  svstem
incorporates  Processing-In-Memory  (PIM)  chips  as
SINArE-MEMary coprocessors o d microprocessor. This
architechore exploits inherent memory bandwidth both

on L':rl.f'j:' and across the system o farget several classes -:_?."

handwidth-limited applications, including multimedia,
pointer-hased, and  sparse-matriv  applications.  The
DIVA project s building a prototype workstation-class
system using PIM chips in place of standard DRAMs to
demonsirate these concepts.

A key component of this architecture s the WideWord

Processor, which is a 5S-stage pipelined 256-hit
datapath, complete with register file and ALU blocks.
This component offers fine-grained data parallelivm
resulting in significant speedups. This paper details the

desien and implementation of this WideWard Processor

in TSMC (). 18um technology.

1. Introduction

The increasing gap between processor and memory
speeds 15 a  well-known  problem  in computer
architecture, with peak processor performance increasing
at a rate of 30-60% per year while memory access times
improve at merely  5-7%.  Furthermore, techniques
designed to hide memory latency, such as multithreading
and prefetching, actually increase the memory bandwidth
requirements [3]. A recent VLS technology trend.
embedded DRAM, offers a promising solution te
bridging the processor-memory gap [9]. One application
of this technology integrates logic with high-density
memory in a processing-in-memory (PIM) chip. Because
PIM internal processors can be directly connected to the
memory banks, the memory bandwidth is dramatically

increased (with hundreds of gigabit/'second aggregate
N

bandwidth available on a chip--up to 2 orders of

magnitude over conventional DRAM). Latency to on-

chip logic is also reduced, down to as litile as one half

that of a conventional memory system, because internal
memory accesses avold the delays associated with
communicating off chip.

The Data-Intensive Architecture (DIVA]) project uses
PIM technology to replace or augment the memory
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system of a conventional workstation  with  "smart
memories” capable of very large amounts of processing.
System bandwidth limitations are thus overcome in three
ways: (1) tight coupling of a single PIM processor with
an on-chip memory bank; (2} distributing multiple
processor-memory  "odes” per PIM chip: and. (3)
ulthizing a separate chip-to-chip mterconnect, for direct
communication between nodes on different chips that
bypasses the host system bus. The system architecture of
DIV A is focused on achieving the following four goals:
(1} developing PIMs that can serve as the only memory
in the system, assuming the dual roles of "smart
memories” and conventional memory: (2) supporting a
wide range of Familiar programming paradigms, closely
related to parallel computing: (3) targeting applications
that are severely impacted by the processor-memory
bottlenecks in conventional systems: sparse-matrix and
pointer-based applications with irregular memory access
patterns, and image and video applications with large
working sets; and, (4) developing a VLSl device 1o
exploit memory and communications bandwidth in PIM-
based svstems while making efficient use of on-chip
resources for largel applications.

This paper focuses on the microarchitecture design
and implementation  of  the WideWord Processor
component of the PIM processing logic. Similar in style
to wvector extensions like AltiVec [1]. the DIVA
WideWord Processor uses a 256-bit  datapath  that
enables signilicant processing speedups through the use
of data parallelism. The WideWord Processor was
fabricated as part of a DIVA prototype chip in TSM(C
O 18um  technology  and is currently in test. The
remainder of the paper is organized as [ollows. Sections
2 and 3 present an overview of the DIVA system
architecture and microarchitecture, to put the WideWord
Processor design into its proper context. Section 4
describes the WideWord microarchitecture in detail.
Section 5 presents details of the Fabrication and testing of
the WideWord Processor as part of a PIM chip, and

Section 6 concludes the paper.

2. System architecture overview

A driving principle of the DIV A system architecture is
efficient use of PIM technology while requiring a smooth
migration path for software. This principle demands



integration of PIM features into conventional systems as
seamlessly as possible. As a result, DIV A PIM chips are
designed to resemble commercial DRAMs, enabling PIM
memory to be accessed by host software as if it were
conventional memory. In Figure 1, we show a small set
of PIMs connected to a single host processor through
conventional memory control logic.

Memory Bus Host
Host Memory

D raCcERSOT ,
Processor Interface

PIM Array I
PIM \I‘IM f../.‘ PV

N\ 7

PIM-to-PIM Interconnect

Figure 1. DIVA system architecture
Spawning computation, gathering results,
synchronizing activity, or simply accessing non-local
data 1= accomplished via parcels. A parcel 1s similar to an
active message, as it is a relatvely  lightweight
communication mechanism containing a reference o a
function to be invoked when the parcel is received [12].
From a programmer's view, parcels, together with the
global address space supported in DIVA, provide a
compromise between the ease of programming a shared-
memory system and the architectural simplicity of pure
message passing. Parcels utilize a separate PIM-10-PIM
interconnect to enable communication without interfering
with host-memory traffic, as shown in Figure 1. Details
of this interconnect can be found in [ 10]. and more detail
about the DIVA system architecture can be found in
214116117]

3. Microarchitecture overview

Each DIVA PIM chip 1s a VLSI memory device
augmented  with  general-purpose  computing  and
networking/communication hardware. Although a PIM
may consist of multiple nodes, each of which are
primarily comprised of a few megabyies of memory and
a node processor, Figure 2 shows a PIM with a sing
node, which reflects the focus of the initial research that
is being conducted. Nodes on a PIM chip share a sing
PIM Routing Component (PIRC) and a host interface.

I

o

The PIRC is responsible for routing parcels on and off

chip. The host interface implements the JEDEC standard
SDRAM protocol so that memory accesses as well as
parcel activity initiated by the host  appear as
conventional memory accesses from the host perspective.

Figure 2 also shows two interconnects that span a PIM
chip for information flow between nodes, the host
interface. and the PIRC. Each interconnect is
distinguished by the tvpe of information it carries. The

PIM memory bus is used for conventional memory

host processor. The parcel interconnect

accesses from the

allows parcels to transit between the host interface, t
nodes, and the PIRC. Within the host interface. a parcel
buffer (PBUF} is a buffer that iz memory-mapped into
the  host permitting
application-level communication through parcels. Each
PIM node also has a PBUF. memory-mapped into the

As

processor's  address  space.

node's local address space.
Memory
Processing
To Neighboring PIM Lowic
PRI II-'| Memory Port

Node
PIM Memory Bus

PIM Routing | parcel
Component | Ipterconnect

v 1

To Neighboring PIM

||‘[3l |[-'| Memory I‘urll
Host Interface

To Host System Memory Bus
Figure 2. DIVA PIM chip organization

Figure 3 shows the major control and data
connections within a node, with the 256-bit memory data
bus as the centerpiece. The DIVA PIM node processing
logic supports single-issue, in-order execution, with 32-
bit instructions and 32-bit addresses. There are two
datapaths whose actions are coordinated by a single
execution control unit: a scalar datapath that performs
sequential - operations  on 32-hit  operands, and a
WideWord datapath that performs fine-grain parallel
operations on 256-bit operands. Both datapaths execute
from a single instruction stream under the control of a
single 5-stage DLX-like pipeline [8]. The instruction set
has been designed so both datapaths can, for the most
part. use the same opeodes and condition codes,

generating a large functional overlap.

Memory Port

Node WideWord Datapath
Memory iReg File, ALU, ete)
Mc”_]"'--\_ | =™ Pipelined Execution

( IO-I'Ill.l"| & ||—'[ ache Control Unit
Arbiter
Scalar Datapath
P 20 File, ALUL etc)

Address/Control

m— | ata

Figure 3. DIVA PIM node architecture

PRUF

Fach datapath has its own independent general-
purpose register file, 32 32-bit registers for the scalar

datapath and 32 236-bit registers for the WideWord
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datapath, but special instructions permit direct transfers
between  datapaths  without going  through  memaory.
Although not supported in the initial DIVA prototype,
floating-point extensions to the WideWord datapath will
be provided in future implementations. In addition to the
execution units, each DIVA PIM node contains other
essential components of note. These components are

described in [5].

4. Microarchitecture details of the DIVA
WideWord Processor

The combination of the execution control unit and
WideWord datapath is regarded as the WideWord
Processor. This component enables  superword-level
parallelism [11] on wide words of 256 bits, similar to
multimedia extensions such as MMX and AltuVec. This
fing-grain parallelism offers additional opportunity for
exploiting the increased processor-memory  bandwidth
available in a PIM. Selective execution, direct transfers
w/from  other integration  with
communication, as well as the ability to access main
memory at very low latency, distinguish the DIVA
WideWord capabilities from MMX and AluVec. This
section details the microarchitecture of this component
by first presenting an overview of the instruction set

register  liles,

architecture, followed by a description of the pipeline.

4.1. Instruction set architecture

opeode rD ri rB P W] funct
& 5 5 5 1 2 2 &
- -
e

Field Bit Widths
(32 bits total)
Figure 4. WideWaord instruction format
As shown i Figure 4, most DIVA WideWord
instructions use a three-operand format to specify two
256-bit registers and a  236-bit  destination
register. The opeode  generally  denotes a
operations, such as arithmetic, and the function denotes a
specific operation, such as add or subtract. The € bit
indicates  whether the operation performed by the
instruction execution updates condition codes. The W
field indicates the operand width, allowing WideWord

source

class

data to be treated as a packed array of ohjects of eight,
sixteen, or thirty-two bits in size. This characteristic
means the WideWord ALL can be represented as a
number of variable-width parallel ALUs. The P field
indicates the participation mode, a form of selective
subfield execution that depends on the state of local and
neighboring condition codes. Under selective execution,
only the results corresponding to the subfields that
participate in the computation are written back, or
committed, t© the instruction’s destination register. The
subfields that participate in the conditional execution of a

|\|.
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given instruction are derived from the condition codes or
a mask register, plus the instruction's 2-bit participation
field. For more details, see [2].

The WideWord instruction set consists of roughly 30
instructions implementing typical arithmetic instructions
like add. subtract, and multiply: logical functions like
AND, OR, NOT, XOR; and logical/arithmetic shift
operations.  In addition, there are load/store and transfer
instructions that provide for rich interactions between the
scalar and Wide Word datapaths.

Some special instructions inc
and pack/unpack. The WideWord permutation network
supports fast alignment and reorganization of data in
wide registers. The permutation network enables any &-
bit data field of the source register to be moved into any
&-hit data field of the destination register. A permutation
is specilied by a permutation vector, which contains 32
indices corresponding to the 32 2-bit subfields of a
WideWord  destination  register. A WideWord
permutation instruction selects a permutation vector by
either specifying an index into a small set of hard-wired
commonly used permutations or a WideWord register
whose contents are the desired permutation vector. The
merge instruction allows a WideWord destination to be
constructed from the intermixing of subbields from two
source operands, where the source for each destination

subfield is selected by a condition specified in the

ude permutation, merge,

instruction.  This merge instruction effects efficient
sorting.  The pack/unpack instructions  allow  the

truncation/elevation of data types and are especially

uselul in pixel processing.

4.2, Pipeline description

The WideWord Processor pipeline is a standard DLX-
like S-stage pipeline, with the following stages: (1)
mstruction fetch; (21 decode and register read: (3)

execute: (4) memory: and, (5) writeback. Data hazards
oceur  when  there  are  read-after-write  register
dependences between instructions that co-exist in the
pipeline. The controller and  datapath  contain  the
necessary forwarding, or bypass, logic to allow pipeling
execution to proceed without stalling in most data
dependence cases. Register forwarding 15 complicated
somewhat by the participation capability.  Participation
status must be forwarded along with each subfield o
effect correct forwarding.

5. Implementation and testing of the DIVA

WideWord Processor

The DIVA WideWord Processor  specification
required on the order of 25000 lines of VHDL code,
consisting of a mix of RTL-level behavioral and gate-
level structural code. A preliminary, unoptimized stand-
alone lavout of the WideWord Processor used 100,000
standard cells (approximately one million transistors) and



occupied 10 sq mm in 0.18Wm technology, projected to
operate at 300MHz while dissipating 300mW.

Although the WideWord Processor is suitable for
stand-alone implementations, the DIVA project employs
it as part of a tightly integrated node design, as discussed
in Section 3. The WideWord VHIDL
speciflication was included as part of a DIVA PIM
prototype specification. which was synthesized using
Synopsys Design Analyzer. The entire chip was placed
and routed with Cadence Silicon Ensemble, and physical
verification, such as DRC and LVS, was performed with
Mentor Calibre. The intellectual property building blocks
used in the chip include WVirage Logic SRAM. a
NurLogic PLL clock multiplier, and Artisan standard
cells. pads. and register hiles.

The first DIVA PIM prototype, shown in Figure 3, is
a single-node implementation of the DIVA PIM chip
architecture. Due to challenges in gaining access to
embedded DRAM fabrication lines, this first prototype is
SRAM-based. This chip implements all features of the
DIVA PIM architecture except address translation and
floating-point capabilities. A second version of a PIM
chip. which not only integrates these functions but
achieves a faster clock rate, is due to tape out in the
second half of 2002, The chip shown in Figure 3 was
fabricated through MOSIS in TSMC 0. 18um technology,
and the silicon die measures 9.8mm on a side. It contains

approximately 2 million logic transistors in addition to

Y g 2y
Processor

the 53 mullion transistors that implement & Mbits of
SEAM. The chip also contains 352 pads. of which 240
are signal I/0y, and is packaged ina 33mm TBGA.

?

Figure 5. DIVA PIM prototype chip

The chip is being tested with the use of an HP
L6T02A logic analysis system. Pattern generator modules
are utilized to apply test vectors to the inputs of the chip.
and timing/state capture modules are used to sense the
outputs of the chip. The chip is currently being tested for
functionality at a testhench speed of 80MHz. Although
exhaustive testing has not vet been completed. the chip is
running a demonstration application of matrix transpose
that exercises all major contrel and datapaths within the
scalar processor, including the permutation network
highlighted in Section 4.1. Even in this limited test setup,
the chip 15 achieving 640MOPS and 2.36Ghvtes/s
memory bandwidth while dissipating only 800mW. We
anticipate even greater achievements with further testing.

6. Conclusion

This  paper has presented the design  and

implementation of the WideWord Processor used in the
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DIVA system, an integrated hardware and software
architecture for exploiting the bandwidth of PIM-based
systems. A working implementation of this design, based
on TSMC 0. 181m technology, has proven the validity of
the design. The workstation system that is currently
being developed o use this component is projected to
achieve speedups ranging from 8.8 1o 383 over
conventional workstations for a number of applications.
These improvements arise mainly from three sources:
decreased memory times: coarse-grain parallelism across
PIMs to exploit system bandwidth; and, wide on-chip
datapaths to exploit fine-grain parallelism, including
especially those wide datapaths within the WideWord

Processor.
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Abstract. The DIVA (Data IntensiVe Anchibecture) system incorpo-
rabes Proosssing-In-Memory (PIM) chips as smart-memory coproosssorns
to a host microprocessor, It exploits the inherently hizh on~chip mem-
ory bandwidth and additionally provides a separate memory-bo-menory
h@m&mmmtmmﬂemmmdm the DIV. is;.rs-
tem apchitecture targets a broad range of applications, inchding those
with irregular data access patterns. At the same time, DIVA supports
familiar programming paradigms from parallel computing and offers an
evolutionary migration path for application development,

The DIVA project is constucting a demonstration system using a con-
ventional superscalar host processor with a main memory composed of
VLSI PIM chips in place of standard DRAMs This system has a nowel
mix of operating—sysbem challenges, combining aspects of conventional
“duanl® memory managenent and Tsoth shared- and distribabed-memory
multiprocessor operations, This paper descibes our solutions to the
memory-ianagenent problems posed by this multifacebed enviromment.

1 Imtroduction

The Data Intensi Ve Architecture (DIVA) praject is building a workstation-class
gystem u=ing embsxlded-DRAM technology to replace the memory gystem of a
comventional workstation with “smart memories™ capable of very large amounts
of prooessing. The goal of the praject is to significantly reduce the ever-increasing
processor-rnermory bandwidth bottlenedk in conventiomal systems, System band-

width limitations are thus overcome in three ways, as illustrated in Figure 1z
(1) tight eoupling of a single PIM proosssor with an on-chip memaory banks (2)
distributing multiple processor-memory nodes per PIM chips and, (3) utilizing a
separate chip-to~chip interponnect, for direct communication between nodes on
differemt chips that hypasses the host system bus.

** Appeared in “Workshop on Intelligent Memmory Systems," Novernbser, 2000
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Host CPU EtherNet
Host Bus cPCI
- ™ Interface
Memory
Controller

DRAM Bus

PIM PIM o8 PIM PIM

PIM Interconnect Network

Fig. 1. DIVA System Anchitecture,

This paper describes memory management in DIVA. Two aspects of the
DIVA project distingnish its memory management requiremments from that of
other PIN-hasad architectures

— The PIMs serve ag the only memory for a standard host mieroprocessor,
assuming the dual roles of “smart memories™ and conventional memmory.

— DIVA targets applications that are most severely impacted by the processor-
memory hottlenecks in conventional systems: sparse-matrix and pointer-
based applicatioms with rregular memory access patterns, and image and
video applications with lange working sets,

As oompared to system-on-a~chip solutions [6, 5], and multiprocessors made
up solely of PIM chips [7,4], DIVA's support for conventional memory acessses
fromm. an external host requires a dual view of memory, from the host. perspective
and the PIM's perspectivie. Other PINM architoctures addmess this challenge by
restricting PIM functionality to SIMD exeeution on large streams of data, at
the hoat's direction [1,2]. In DIVA, we suppart a much broader range of pro-
gramming paradigms, including task-level parallelism and in-memory accesses
to pointer data structures, As a result, DIVA requires a memory model that
qupports indepenident threads of control and efficient translation in memory,
withont necessitating host. intervention.

A previous paper presents an overview of the DIVA project and describses
a memory madel to support these requirements [3]. This paper discusses the
memory management support meeded o realize this memory model.
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2  Overview of Memory Model and Address Translation

The DIVA memory madel attempts to gatisfy a mumbsr of potentially conflicting
Teuiretents:

— sealability to tems of PIM chips;

— efficient hardware mechanisms amenable to straightforwand implementation:

— an abetract machine eomprehensible to both programmers and eompiler writ-
oss

— compatibility with eonventional memory models and memory interfaces;

— suppart. fior virtual memory (i.e., paging to/from disk) and swapping; and,

— supporting eorrect funetionality of both shared- and distribated-memery
programiming molels.

The unifying concept. for the DIVA memory mode] is communication via a global
adedress space shared by the host processor and all the PIM node proscessors.
Nat. all memory neod be shared, however, so our hardware supports local PIM
adedress spaces as well, All of the processors in our demonsiration system use
32-hit addresses, but the model can tse advantageously exctended to future G=hit
gvsloma

To interpret addresses in PIM oode and data, a PIM processor must support
a translation mechanism. However, the space and time overhead of maintaining
conventional page tables at each node is prohibitive. To simplify translation
hardware, we classify DIVA memory according to usage:

— global memaory is a single address space distribated armoss nodes, visible to
applications running on the host and PIM nodes.

— (himb memory is a region of a node’s memory allocated as comventional pages
in a host application”s virtual space and untouched by PIM node processing.

— local memory is a regiom of a nodes memory used almost exclusively by
PIM routines. Certain exeeptional functions of the host operating system,
guch as initialization and eomtenct management, will also acoess this memory
aeeagionally, requiring well-defined data-sharing eotventions,

The physical memory on each PIM chip is flesdbly partitioned into these
three distinet nses. Dumb memory is managed exclusively by the host operating
gystem in standard ways, with address translation handled solely by the host
processor’s memory-management hardware, Figure 2 depicts the two more in-
teresting nses of PIM memory, as part of the shared global address space, or
as PIM loeal memory. The DRAM memory associated with the global address
gpaoe is phydically distributed across all the PIM nodes involved in a compu-
tation. Addresses in the global virtual addness space are sonsistent for the host
and all PIM newle processors, so that pointer-hasad data struetures ean b frooly
shared. In contrast, while the host has physical acoess to the PIM DRAM usad
as loeal memory, the host and PIM node prooessors will see it at different virtual
adedreszes,
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Host CPU

Global Virtual Address Space
PIM PIM o0® PIM PIM
Local i iLocal Local | | Local

Local Address Spaces: PIM Code, Data & Stack

Fig. 2. Shared global semments, unshared local semments,

The hest processor can access PIN memory via its memory bus. To avoid
saturation of this bus, PIM-to-PIM communications ococur primarily by means
of a distinet high-bandwidth network between PIVM chips. The hardware directly
aupports shared-memory operations botweaen the host and PIM memories, bt
PIN-to-PIM communications are implementad by network eommumnications in
the form of parcels (Section 23). Pareel operations are hardware assisted, bat
recqiire software prooessing by either tser- or supervisor-level oode at both ends,
Efficiemt network interface and interrupt mechanisms have boen developed o

support parcel functions,
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(MB)

1024 | Host OS Region Reserved
Global Segments Shared data windows
Typacally hundreds of KB
2816 in each mapped window
128 | PIM Physical Space | Untranslated region
16 | Kernel Stack Typically several KB
16 | Kernel Parcel Buffer| Small
16 | Kernel Data Typically tens of KB
16 | Kernel Code Typically tens of KB
-16 | User Stack Typically several KB
16 | User Parcel Buffer | Small
16 | User Data Typically hundreds of KB
16 | User Code Typically tens of KB

Fig. . PIM node processor address map.
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2.1 Address Translation for Locally Mapped Data

A node must be able to rapidly determine if an address is located in its own
memaory, and if so, find the physical address. Each node therefore mamtaing
translations for virtual addresses currently regiding on it, including local memaory
angd its portion of global memory. To eondense translation information, we use
segments, each of which is defined by segment registers containing a physical base
address and limit. The segments are described by the PIM address map shown
in Figure & The local memory region is partitioned into eight segments at fixed
virtual bases, for kernel omde, stack and data, user osde and data/stack. and
for kernel and user network-communication buffers. A small numbser of global
segment registers are also used: since global segments must be able to map
portions of a shared virtual address space much larger than the physical memaory
of an individual node, global sepments must be represented by both a virtual
angd physical base address register.

Figure 3 shows the virtual address map for a PIM node prooessor. The virtual
size of each region of the map is shown on the lefi: typically enly a fraction of that
virtual address space will be used, as noted on the right of the diagram. The
lowest-addressed (bottommest) segments of the address map define the local-
memory user-mesde space for the current prooess. The next group of segments
defines the local-memaory supervisor-mode space for the lernel, which is the same
for all prooesses. The kernel can also access the PIM's DRAM without address
translation via the physical space region.

Each PIM has a small mummber of relocation registers to allow it to map
portions of the shared global address space 1o the node's physical memory. The
agrregate sise of these “windows” into the shared address space is limited by the
amount of physical memaory available on a node. The top region of the map is
unused. but reserved to conform with the host operating system’s address map.

2.2 Translating Remote Addresses

Acoess 1o parts of the global address space not mapped 40 physical memory on
the node is possible via the network, but less efficient than a mapped acoess.
A parcel must be sent o the node which containg the physical memory to e
aocessed, and a response parcel received and proosssed, either by user or lernel
code

DIVA determines the location of remeote data via a two-stage process. The
virtual address of a datum is hashed by hardware to determine the “home node™
of the datum [8]. The home node may or may not b the present physical location
of the datum, but serves as the centralized directory and manager for it. The
home node will either perform the operation itself, if the datum is resident, ar
forward the request to another node, if the datum resides elsewhere.

Therefore, a nede must maintain translation information for anly eight loeal
segments plus a small numbser of segments for its portion of the global memory, as
well as for any global data for which it is the home node. The major advantages of
this approach are that translation may b accomplished rapidly, and translation
information on aach PIM scales well.

315



2.3 Parcels

All PIM-t0-PTM network commumications are performesd by sending and receiv-
ing messages in the form of parcels. Parcels are an objoct-based variant of active
messages [9], distinguished from active messages in that the destination of a
pareel I8 an object in memaory, not & spacific noxde. From 4 programmer’s view,
parcels, together with the global address space supported in DIVA, provide a
compromise between the ease of programming a shared-memory svstem and the
architectural simplicity of pure message passing. Remote operations or astesses
can be acoomplished through parcel sends and receives: application programs
only nesd specify the address of an object, and not the processor upon which
the object resides.

Structurally, a parce]l packet hag a 256-bit payload and 96-bit header, which
inclhudes:

— the memaory address of the target object, expressed in the application’s ad-
dress spaoe,

— the environment id (eld) of the prooess in the host that is executing the

— a command identifying the funciion to be performed by the node associated
with the tanget when the paroel arrives.

The 256-bit payload serves as arguments to the command. A paroel requiring
more bits must be sent in multiple packets. The payload size matches the PIM
nexle data bus width: streaming packets may be sent In A single bus cyele. The
network interface supports both user- and supervisor-mode ao06ess 1o paroel send-
ing and receiving hardware via the user and kernel parcel buffer segments. User-
mexle parcel processing is more efficlent but less robust than kernel-mediabed
operations, 5o will typically be restricted to compiler-generatad oode or library
routines. Error ponditions ciuse invocation of either user- or supervisor-rmode
handlers.

3 Overview of Memory Management

Memaory management functions are dividad between two types of kernels in the
DIVA gystermn. Om the host processor, the standard operating system (in DIVA,
Linux) is augmented with functionality to support PIMs. On each PIM prooes-
sor, there is a tiny run-time kernel that is always resident. A primary responsi-
bility of the PIM run-time kernel is to manage parcel commumnication betwesn
PIMs [3]. The run-time kernel performs buffer management of ineoming, parcels,
angd directs context gwitches betwern different threads in the same user pro-
gram, or between user program and kernel. The run-time kernel also performs
recuired software intervention in response Lo interrupts and exceptions on the
PIM processor. In addition to these autonomans functions of the PIM run-time
kernel, it also must collaborate with the host on system-level operations, such as
Ioading PIM pragrams and data, memory management of PIM-visible segments,
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and PIM context switches between different user programs (note that most host
contexct switches will not involve the PTMs).

This division of labor is motivated by the dual goals of keeping the PIM
mun-time kernel as small as poesible, and making only maderate changes to the
standard function of the host operating system. Unlile standard multiprooessor
systems, the host, which has a system-level view, remainsg a central figure in
system-level scheduling, disk I/0 operations, and memory management. The
challenge in this collaboration between host and PIM system software is that
there are really two views of memory that must be maintained. For dumb pages
and for digk IO of PIM-visible segments, the host sees memaory as standard
AKbvte pages: the PIM run-time kernel instead views PIM-visible memory as
variable-gimed segments. Reconeiling these two views through different system
funetioms 18 the subject of the remainder of this paper.

4 Memory Allocation: Virtual vs. Physical

The portion of memory used by the host as dumb memory is managed by the host
operating system using standard allocation. paging and swapping mechanisms.
The memaory devoted o PIM local memory, and global shared memeory, must Tee
managed via a collaboration between host and PIMs. The most unusual aspect
of this collaboration is memory allocation.

Figure 4 shows the functions assodiated with memaory alleeation, and whether
they are performed by host or PIM. There are three phases to allocation: (1)
host allocation of contiguous virtual address spaces for global and PIM local
segments using the Reserve functions: (2) physical allocation of an object and
hinding to reserved virtual segments and, (3) mapping of existing global objects
to a global segment for sharing between PIMs. Deallocation (GlobalFree) froes
physical memaory but does not shrink the virtual-space allocation.

The standard memory allecation functions malfloc and free can be used on
either the host or PIMs; the meaning depends on where the functions are exe-
cutéexd. Om the host, a4 call to malloc performs a standard allecation from dumls
memory. Om the PIMs. it allocates memory from the PIM's local heap segment.
Memaory obtained from mallec is private to a process and unsharable.

4.1 Virtual Memory Allocation

Using a segmented approach requires that data in a ssgment reside in contiguois
virtual addresses. For this reason, as part of the allocation process, we must
reserve & contiguous chunk of the virtual address space for each segment prior 1o
physical allocation. The virtual memory allocation is performed by the host using
the Reserve functions for global and local sepments. Begause the virtual address
spaoe 15 quite large, these reservations should always strive to overestimate the
spaoe requirements of the segment, particularly smee growing a segment beyond
what was initially reservad results in very oostly adjustments in virtual and
physical allecations. Linux supports this reservation proeess by clustering free
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ReserveGlobalSegment
(int numBytes

int virtualNode .

) Allocate Virtual
ReservelLocalHeapSegment [ Address Space
ReserveLocalCooeSegment (Host Only)
ReservelLocalStackSegment

(int numfzre
.-mf virtualNoace)
GlobalMallocToNode
(int numBytes,
int virtualNode, -
int segmentName) Allocate Physical
Memory Space for
GlobalMallocToAddress €= N O E
(int numBytes, d
void *existingObject) (Host or PIM)
malloc
(int numBytes)
GlobalMap
(int numBytes, A
void *existingObject) ceess
<€— Existing Object
GlobalUnmap (Host or PIM)
(void “existingObject)
GlobalFree Destroy
frre <— Existing Object
|:‘-"0|d *-&xlstlﬂgﬂ)]%ﬂ (Hmt or PM

Fig, 4. Host and PIM memory management functons and steps of memory allocation.
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pages in the virtual address space togethers reservations select a cluster that
matches the requested sime.

Multiple global segments can be reserved by separate invocations to the e
serveGlobalSegment fumetion. Fach global segment reservation will ereabe a new
segment with a unique name (see Section 7.2). The segment name can subse-
quently be usad opticmally by allecation functions, as discussad below. Similar
funections exdst to allocate the virtual address space for PIM-local code, data
angd stack segments. These are italicized Lo indicate that they are gptional, sinpe
standard default values often suffice.

4.2 Physical Memory Allocation

The physical allocation is performed through a sollaboration between host and
PIM. As part of physical alloeation, the page table entries on the host are filled.
On the PIM side, segment registers may be updated.

The functions shown in Figure 4 allecate a specific object t0 a ssgment.
Howenver, global and per-nade local memory allocation and deallocation could
swamp the host operating system with fine-grained memory allocation requests.
Behind the scenes, we distribute this task using a two-lewel scheme where coarser-
grained requests 1o the host are made by each PIM run-time kernel to replenish
locally managed memory poals of pre-allocated global and lecal memory. This
approach keeps the host involved in memory allocation, but still permits the
PIMs to allecate memory independently a8 neaded for managing pointer-basad
and other dynamic structures during PIM computation.

The DIVA programming moxdel offers a globally addressable, distributed ad-

dress space on shared data. PIM applications perform correctly when aocessing
non-leeal memory, either by communicating via the parcel mechanism, or by
retrieving data in response 0 a4 more expensive address translation fault. Nev—
ertheless, just as with distributed-shared-memory architectures, 1o achieve the
best performance, an application must whenever possible co-locate data with
the computation that acessses it. For this purpese, there are two Aavors of mem-
ory allecation functions. The GlabalMallocToNode function associates allocated
data to a specific virtual PIM home node. An optional segmend Name argument
permits this allecation to occur within a specific global segment. To allow two
relabed objocts o be collocated without requiring the virtual PIM identifier, the
Globad Malloc T Address funciion instead permits dynamic allecation of objects
to the same virtual PIM node and global segment upon which another datum
mesices.
To simplify the programming model, GlabalMalloc functions performed on
the PIM match the interface used on the host. Most of the time these funciions
will be used to allocate data from the PIM's locally resident global segments,
but it is possible for 4 PIM to perform an allecation on a remote PIM node. The
effect of such an allogation is to allocate virtual addresses from the remote node,
and locally map the object to the requesting PIM s global segments and physical
storage. Such an allocation can be performed to support efficient updates of the
remote data prior to forwarding them to the remote node (see Section T.3).
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4.3 Mapping Existing Objects to PIM Global Segments

Like the GlobalMadloc to a rermote node, it is sometimes desivable to temporarily
map non-resident global data o facilitate sharing among PIMs. The GlebaMap
funetion performs this mapping to global sspment registers, and Global UnMap
returns the data to its home node (see Section 7.3).

5 Paging

To perform computations requiring acosss to global data structures larger than
the actual amount of physical memory, we support A virtual-memory “paging”
mechanism for PIM-prooess memary. (We use the slightly inaccurate term “pag-
ing” in preference to the technically preferable term “global-segment acoess fault
management” for brevify.) If the memory acoess which caused the fault refer-
ences A datum resident in 4 PIM memery, it can be resolved without troubling
the host operating system, by retrieving the accessad datum via a parcel request
to its home node On the other hand, if the home node returng a message indi-
cating that the requested datum is not resident in the system s physical memary,
the initiating PIM kernel must request paging service from the host, which is
connected 1o the disk bagking store.

Host Action PIM Action

Access Fault by PIM Process
¥

Suspend PIM Process
¥

Request to Host Kemel

Page in PIM Process Memory
¥

Update Process Addr. Maps
L ]

Acknowledge to PIM Kemel

Resume PIM Process

Fig. 5. Paging sequence,

As shown in Figure 5, the faulting PIM process is suspended until the datum
is paged in from disk, and the host lernel becomes the owner of that process

320



combenct during the memory reorganization. The host pages in a section of the
Zlobal virtual space containing the datum. The paged-in section is typically
mappeed to a distinet segment of the global space. However, if the faulting address
is adjacent to an existing locally mapped segment | the segment may be esctended
Lo contain it.

After the host leernel has resolved the fault and adjusted the faulting process’
PIM pontext mappings, it returns ownership of the context to the PIM kernel,
which reloads the PIM address translation hardware when it reactivates the
PIOCESS.

The paging system is a useful but relatively expensive feature, best used
sparingly.

6 Contexts and Swapping

A DIVA PIM node supports very efficient contead switching for the most ¢ommon
cases, either switching between a user program and the PIM run-time lernel, ar
between two distingt threads within the same user program. Switching o the
mun-time leernel requires no change 4o segment registers, and requires minimal
saving and restoring of register state. Switching between different threads in the
same user program, such as when performing the command associated with an
incoming paroel, requires madification to only two of the segment registers, but
dowess require saving and restoring of portions of the register state. In either case,
there i5 no nesd Lo swap memaory in or oul in response 1o a contet switch.

In performing its normal job scheduling function, the host may direct the
PIM nosde’s contenct 0o change to a different user program that requires PIM
functionality. In this case, a full eontexct switch is necessary, saving all the reg-
ister state as well as updating the program-specific segment registers. Further,
memory may néed to be swapped in or out. If the user-code physical memory is
swapped out and recyeled, the content of the PIM node processor’s instruction
cache must also be invalidated by software, sinee the new program’s code mem-
ory may overlap with the previous program’s. (Our processor, like many others,
doses not enforce aoherency in the instruction cache hardware.) Note that at any
time, the host may be executing in a different context from one or all PIMs:
for most host contenct switches, it will not be necessary to change the PIM node
combenct.

The host operating system 18 respongible for creating contexts for the PIMs,
angd also for updating contexts in response to major system context switches
(Lightweight PIM context switches, ez, multithreading, do not involve the
host.) To facilitate host management of contents, during initialization the host
creates a data structure, mapped to the PIM s memory, that it shares with the
PIM run-time kernel. While it is possible for the host to build this data strue-
ture through a series of parcels sent to the PIM run-time lernel, for efficiency
we permit the host operating system in privileged mosde to write directly into
portions of the PIM run-time kernel data segment. The host also updates this
structure in response Lo A systern oontesxdt switch.
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Gl Contenis of Comtext

Figure 6 graphically depicts the contents of a comtexct. Om Initialization of a
user program, the host performs virtual memoery allocation of the segments. as
discussed in Section 4.1, and writes the range of allocated virtual addresses mibo
the contexdt data structure in the PIM run-time kernel segment. The remainder of
the comtenct 18 reset to default values. As a result of physical memaory alloecations,
the physical segment mappings are added to this structure. The remainder of
the fields are filled in by the PIM run-time lernel when saving state as a result
of a contenct switch, When this content is restored., the host updates the segment
mappings as needed.

Local Segment Mappings | Code, stack, local heap
Global Segment Mappings | Shared data windows
Scalar Register Set 32 32b-wide entries
WideWord Register Set | 32 256b-wide entries
Scalar Floating-Point Set | 32 64b-wide enmies
Condition Codes, etc. Scalar & WideWord
Parcel Buffer State Network interface state

Fig, 6. Contents of combent,

6.2 Swapping

Swapping is another mechanism for supporting computations with large memeory
rexquirements. Many computationg can be bnolen up into distinct phases which
need not e gimultanesously active. Peak memary requirements may b reduced
by swapping out inactive processes or low priority active processes. Swapping is
somewhat similar t0 paging; the primary distinctions are that the entire context
is moved to the disk backing store, fresing all the process memory, and that the
host operating system, rather than the PIM kernel, initiates the swap as part of
its overall scheduling function.

The sequenoe of actions required to effect a prooess swap and restore is
sketched in Figure 7. As in the paging sequence, the ownership of the prooess
combeact and its associated resources passes from the PIM lernel to the host op-
erating system when the PIM prooess is suspended. Restoring a process contexd
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from an out-swapped state is quite similar to the nitial nstantiation of the
PrOcess.

Swapping out a contesct frees most local process resources for reuse, bul does
not free memory used o store global serments. sinoe they are likely to be in use
by related processes on other PIM nodes. The global memeory use may well eocoesd
the loecal, 8o this is a potentially major problem for our storage reclamation
capabilities. To be able to effectively manage groups of related processes, and
to be able to decide when their associated global segments may be swapped
out, we adopt a system of naming global segments, diseussed in Section 7.22.
We can thereby “gang schedule™ related processes which use particular global
segments and swap out their local and global resouroes together. We can record
process references Lo a given global segment by explicit sapment mappings and
by remote paros] accesses. Statistics such as these can b recorded by each PIM
nexde kernel and stored lecally. The host operating system will only nesd to
ecamine and aggregate these distributed runtime statistics in the event of a
mequirement. for A major swapping operation, such as phase transition for a very
large computation.

In gemeral, the host must attend to global changes in the PIM-based com-
putation, e, scheduling functions, where resource allocation policies may e
altered, and 4o cheres which require acesss to external deviees, such as swap-
ping or paging to disk. We minimize the host's workload, and its potential for
saturation, by requiring it to perform anly those tasks which are global in their
CSRETION.

7 Local and Global segments

Section 4 describesd how local amd global segments are allocated: here we consider
how they are managed. Local segments should remain fairly small, so there is
little conoern that portions of them will b paged to disk during active PIM
excecution. Rather, we assume that meost of the data read or written by PIM
computationg will reside in global segments.

Global segments provide a mechanism for sharing global data bedween host
and PIM or across PIMs. Data-intensive applications will have a lange amount of
global data that can easily excead the available physical memory capacity: thus,
it is desirable to brealk up global data into multiple global segments. Global
segments can be much larger than the AKbyte page sime of the system, and there
can be many more global sapments associated with a user program than are
mapped o the small set of global segment registers on each PIM. As a result,
data required by a portion of the computation of the PIM program may Twe
spread acroes multiple global segments; to avoid thrashing, care must be taken
to map these segments to physical memaory simultaneously during this portion
of the computation. The remainder of this section describes the mechanigms for
organizing and managing data in multiple or very large global segments.
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Host Action PIM Action
Decide fo Swap PIM Process
Request ’cr;F PIM Kernel
Suspend PIM Process
Acknﬂwle-dge:ﬂ Host Kernel

Change Process Addr. Maps
¥

Swap PIM Process Memory
¥

Decide to Restore Process
¥

Restore PIM Process Memory,
¥

Update Process Addr. Maps
¥

Request to PIM Kernel

Resume PIM Process

¥

Acknowledge to Host Kernel

Update Process State

Figa Ta Swapping seruence,
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T.1 Large Global Segments

In the absence of compiler or application-level support for defining segments,
the operating system's default behavior is 0 create one or 4 small numb<r of
possibly very large global segments for a user application program. In this case a
single segment can be much larger than the availlable physical memory capacity,
so that only a portion of the segment can regide in memory at a time.

Sinee each PIM has muliiple global segment registers, even a single global
segment can be managed as multiple segments by having distinet segment reg-
isters mapping different portions of the segment. This approach works well, for
cxample, if an application is streaming through its data set sequentially. As it
completes its actesses Lo data represented by one segment regigter, it can move
on to data represented by another segment register. The operating system and
PIM run-time lernel can page out the data associabed with the former segment
regigters, and reclaim the segment registers and physical memory for a subse-
quent portion of the ssement.

T-2 Assigning Names to Global Segments

While a single large segment can be managed effectively for streaming appli-
cations, in general, 4 more fleadble mechanism is required for organizing data
into multiple segments. For example, an application may revisit data in different
phases af 4 computation; or, ong data structure may be neaded at the same time
as another data structure n one phase of computation, and also required at the
same time as a third data structure during a later phase of computation.

Onr approach 18 Lo assign names Lo segments a8 they are being created . and
permit the compiler or application program to optionally reference these seement
names in memory allecation functions. For ecample, the effect of the allocation
function GlobalMalloc ToNode(int numBites, it virtualNode, fnt segment Name)
i8 to allecate numBybes from the named segment segmend Name on virtual PIM
nowle virtuwal Node. (The effect of a GlobalMalloc ToAddress call is to perform the
alleation on the same virtual PIM node and in the same global serment as
that of the specified address.) By allocating two objects from the same global
segment that arve always used together, we ¢can maximize the leelihood they
will always be simultaneously in memory whenever they are bing acoessed. In
cases where grouping all related data would mesult in too large a segment, the
related data must be broken into multiple smaller segments, such that their size
more manageably maps to physical memory, but at the same time, there are
sufficiently few related segments a0 that all can simultanecusly map to the small
number of global segment registers on each PIM.

T.3 Sharing Globhal Segments across PTMs=

Ag noted above (Section 4.2 and Section 4.3), mapping a global segment to local
physical memory provides A mechanism for efficient sharing of large blocks of
global data by asserting temporary ownership of a local oopy of a data blodk
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that may be “homed” on ancother node. The home node of a datum in the
global address space is a function of its virtual address, but the ibem may reside
on ancther node. The home node provides a central acoess point for the item
regardless of its actual location. In the absence of active mappings by other
nowdes. & datum will be (rellocated to its home node

The shared data block is ereated by either the host or a PIM node via the
GlobalMadloe functions. The GlobalMalloc functions perform twa distinet roles:
allocating a block of physical memory and mapping a portion of the (previously
reserved) global virtual address space to that physical memaory. The GlobalMai-
locToNode function associates allocated data with a specific virtual PIM home
nexle. Howener, if the function I8 invoked by oode on a given PIM node, the
mitial physical memory allocation is made on that PIM node, which nead not
be the home node. A virtual-memory allocation request is sent to the remaote
home node, which records the location of that data object and returnsg a range
of allocated virtual addresses dravn from its virtual pool. The requestor nade
maps that virtual address range 0 the physical memory it has allecated from
its own physical pool. The requestor prooess 15 then free to access its nstanti-
abed data object at will. The prooess may terminate its use of the data objact
by invoking either the GloballUnMap or GlobalFree funciion. Calling GlabalFree
unmaps the object and indicates that its physical storage may be recycled and
its content destroved. Calling GlobalUnMap merely unmaps the object from the
current process and indicates that its content should persist. The object will be
relocated 10 its home nade, where other processes may subsequently aooess it by
calling the GlobalMap function. The object will be destnoved when some prooess.
host or PIM, calls Glodbad Free on it, or the computation terminates.

For simplicity, our sharing model supparts only a single aopy of the data and
will blodk 4o enforee serialized access if nepessary. All access control is serial-
Imexd through the home node In such a bagic environment, careless use of the
GlobalMap function can result in deadloclk; this is regarded as a programming
CITOT.
The distributed-shared-memory mechanism outlined above is intended for
simple block-oriented data sharing, for applications where bandwidth is a more
appropriate metric than latency. More flexible and finer-grained acoess is avail-
able via the parcel mechanism, which may b nvoled ether explicitly with
user-moxde aocess to the network interface, or implicitly, by the PIM kernel in
response o an aceess fault. Note that our remote-acosss model permits acosss to
portions of existing global segments which are not mapped to physical memory
on the local PIM node, at higher cost.

8§ Summary and Conclusion

This paper has described the memory management requirements for DIVA, a
PIM-based architecture incorporating PIMs as the only memory for a conven-
tional hogt processor. Two goals of the DIVA praject impoee fundamentally new
requirements on memory management: DIVA PIMs must perform pointer ac-
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cesses within memory, and they must support both smart-memory functionality
a5 well as conventional memory acoesses. The adoption of a globally shared ad-
dress space for both host and PIM nodes allows free use of pointer-based data
structures. Careful partitioning of complex memory-management tasks such as
paging and swapping between the host and PIM node kernel allows a single host
processor to supervise many PIM nodes without overload.
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Abstract

Processing-in-memory (PIM) chips thatl integrate processor logic into memory devices offer a new opportunity
for bridging the growing gap between processor and memory speeds, especially for applications with high
memory-bandwidth requirements. The Data-IntensiVe Architecture (DIVA) system combines PIM memories
with one or more external host processors and a PIM-to-PIM interconnect. DIVA increases memory bandwidth
through two mechanisms: (1) performing selected computation in memory, reducing the quantity of data trans-
ferred across the processor-memory interface; and ( 2y providing communication mechanisms called parcels Tor
moving both data and computation throughout memory, further bypassing the processor-memory bus. DIVA
uniquely supports acceleration of important irvegular applications, including sparse-matrix and pointer-based
computations. In this paper, we focus on several aspects of DIVA designed to effectively support such compu-
tations at very high performance levels: (1) the memory model and parcel definitions; (2) the PIM-to-PIM inter-
connect: and, (3) requirements for the processor-to-memory interface. We demonstrate the potential of PIM-
based architectures in accelerating the performance of three irregular computations, sparse conjugate gradient,
a natural-join database operation and an object-oriented database query.

1.0 Introduction

The increasing gap between processor and memory speeds is a well-known problem in computer architecture,
with peak processor performance increasing at a rate of 60% per year while memory access times improve at
merely 7%. To mask memory latency in current high-end computers now demands up to 25 times the number
of overlapped operations required of supercomputers 30 vears ago. Further, techniques designed to hide mem-
ory latency, such as multithreading and prefetching, actually increase the memory bandwidth requirements
[ Burgerda]. Recent VLSI technology trends offer a promising solution to bridging the processor-memory gap:
integrating processor logic and memory in a processing-in-memory ( PIM) chip. Because PIM internal proces-
sors can be directly connected to the memory banks, the memory bandwidth is dramatically increased (up to 2
orders of magnitude, tens or even hundreds of gigabits aggregate bandwidth on a chip). Latency to on-chip
logic is also reduced, down to as little as one-fourth that of a conventional memory system, because internal
memory accesses avoid the delays associated with communicating off chip.

The Data-IntensiVe Architecture (DIVA) project is developing a system, from VLSI design through svstem
architecture, syvstems software, compilers and applications, to take advantage of this technology for applica-
tions of growing importance to the high-performance computing community. DIVA combines PIM memory
chips with one or more external host processors and a PIM-to-PIM interconnect (see Figure ). Within a single
PIM chip, we observe dramatic improvements in and bandwidth and significant reductions in memory latency.
But a more important effect, and a distinguishing feature of DIVA, is the coupling of increased opportunity for
concurrency with ageregaie processor-memory bandwidth increases. Multiple memory chips can work in par-
allel on independent data. and perform PIM-to-PIM communication without going through the processor-
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memaory bus.

An obvious class of applications well-suited to PIM technology is regular --- dense-matrix computations on
large amounts of data that are “embarrassingly parallel.” such as image processing. While good candidales for
DIVA, such applications also perform well on conventional systems. In this domain, localitv-exploiting archi-
tecture features isuch as long cache lines and vector units) and compiler optimizations (such as tiling
[Wolle®9]), and techniques for hiding latency (such as prefetching [Mowry92]) are effective because such
applications exhibil significant data reuse, and compilers are able to predict their memory access requirements.

Host

Broeeror Huost Local Bus Mw‘v
) 3

Bus

Huost Interface FIM-PIM .
System Bus LALTT

PIM-PIN

T
rtertice Tt

Interconnect

Figure 1: DIVA System Organization.

This paper argues the effectiveness of DIVA for a completely different class of applications: frregudar, sparse-
matrix and pointer-hased computations with high processor-memory bandwidth requirements (e.g., sparse con-
Jugate gradient and database applications). Such applications perform poorly on conventional architectures
because their control and data accesses cannot be statically predicted, and they do not make effective use of
cache. As a resull, their execution is dominated by waiting for memory accesses [Carter99]. DIVA can acceler-
ate the performance of such applications by eliminating much of the memory traffic --- simple operations and
dereferencing can be done én sity rather than laboriously moving data around the system. In addition to the
reduction in memory latency for each access, there is potential for coarse-grain parallelism across multiple
PINM chips. Performance improvements also resull from secondary effects such as reduced host cache and TLB
pollution because irregular accesses no longer need be brought into the host processor cache.

While several PIM-based architectures have been proposed in recent vears, the DIVA project differs from other
efforts in several ways. There are two distinct advantages to using PIMs as smart-memory coprocessors (o one
or more external hosts: (1) DIVA permits augmenting conventional systems in general-purpose computing
environments; and, (2) applications can be gradually migrated from sequential versions that use DIVA PIMs as
“dumb™ memory toward fully exploiting smart-memory capabilities and parallel in-memory execution. At the
same time, this co-processor model imposes fundamentally new requirements on the system software and
interfaces. Supporling in-memory pointer acecesses requires a new memory model, including a mechanism for
address translation within memory. We also rely on the parcel, a mechanism for communicating compulation
to memory, either from a host or a PIM processor. DIVA also requires the host-to-memory interface be aug-
mented because memory must now be able to communicate with the processor for synchronization, exceplions,
to warn of high-latency events, ete.

The primary contributions of thiis paper are as follows:

+ the first description of the DIVA archilecture.

* the first presentation of system requirements for in-memory processing of irregular data structures.

+ adetailed description of how to map applications (o a PIM-based architecture, with two case studies
from important irregular computations.

The remainder of the paper is organized into Tive main sections and a conclusion. The next section discusses
background and previous work. Section 3 presents the svstem architecture, particularly the PIM-to-PIM inter-
connecl. Section 4 discusses the requirements imposed on the system software and interfaces. Section 5 pre-
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sents the DIVA memory model. In Section 6, we describe how a user application can be developed for DIVA,
leveraging existing approaches from parallel programming. Section 7 presents three case studies of irregular
computations from scientific and database computations; we present system-level simulation results to demon-
strate the potential of PIM-based svstems at achieving improved performance on these applications.

2.0 Background and Related Work

The concept of mixing memory and logic ¢loser than in a CPU-Memory dichotomy is an old one. The DAPP,
STARAN, CM-2, and GAPP all used many relatively small data flows positioned very close (o memory arrays
to implement very large SIMD machines (all with multiple data flows per chip). At least one such chip. the
TERASYS [Gokhale95], was labricated in relatively large volumes, and targeted as the main memory for one
of the later Cray machines. This grew into more or less single chip systems which contained a CPU, some
memory, and 10O with machines like the INMOS Transputer [Knowles91], the nCUBE [Palmersa], the J-
machine [Dallv92], and the SHARC (www.analogdevices.com). While these latter chips could scale to large
arravs, their system architecture was a relatively conventional MPP of some form. The first DR AM-based mul-
tiple node PIM chip was EXECURE, fabricated in 1992 and supporting a 3D binary hypercube MIMIDVSIMD
MPP on a single chip [Kogge4|[Sunaga®6]. A more recent chip is the Mitsubishi M32 R/T), where more than
2 MB ol memory is tightly tied into the on-chip CPU’s cache [Shimizu%6].

What stopped all these designs from becoming mainstream architectures is very simple - memory densify. Early
PIM-like devices used SRAM for memory, and even with relatively primitive MOS technology, it was quile
easy o put more processing power on a single chip than the on-chip data storage could feed. A rule of thumb
for scientilic computing is that one byte of storage for each FLOP provides a good system balance. Taking any
of the previously discussed machines and computing the ratio of on-chip memaory to performance {using what-
ever metric of performance the chip was designed Tor - usually not even floating point), the ratios are uniformly
0.0001 or worse. Even the EXECUBE chip had a storage to performance ratio of only 0.01. The chips were
uniformly memory starved, requiring designs which included ports to off-chip memory.

This began to change around 1997, when DRAM chips with densities grealer than 32 Mbits began to appear.
At this density, a reasonable ratio of storage to processing can be achieved; for example, an entire video frame
bufler can Nt in one chip, along with logic to perform processing on il. With current CMOS projections, 1n a
few vears a single memory chip will contain more than enough memory capacity for a conventional PC. The
realization that complete systems can now be placed on a single chip has led virtually every major semiconduc-
tor manufacturer to offer some form of an embedded DDEAM macro that can be coupled with other predefined
logic macros. At least one industrial organization has sprung up to help set standards to enable such systems
[ Birnbaum999].

While the technology has finally developed to the poinl of reasonable systems, architectures which take dis-
tinct advantage of the new capabilities have only recently come under serious study. In addition to the Mitsub-
ishi M32 R/TD, the IRAM is another system-on-a-chip embedded DRAM device with vector processing logic,
designed for streaming computations [Patlterson%7]. Other approaches use PIM devices as the only processors
in a multiprocessor architecture: a cache-coherent distributed-shared-memory system [Saulsbury96], and a
large-scale distributed-memory system [Kogge96]. The Active Pages project, which is the most closely related
to DIVA, associates configurable logic with each memory page to accelerate performance of an external host
[Oskin9s].

There are also several other architecture approaches, not based on PIM technology, designed to improve pro-
cessor-memory bandwidth [Carter99][Burger97 ][ Rixner98]. Impulse augments the memory system to perform
application-specified scatter/gather operations on niregular data in the memory controller, so that contiguous
data is brought into the cache [Carter?9]. Imagine is a system-on-a-chip streaming architecture designed for
media applications, which uses a stream programming model [ Rixner9s|. The DataScalar architecture is a mul-
tiprocessor system where each processor asvnchronously executes the same code and broadcasts any local data

to the other processors [Burger97]. DIVA is distinguished from these approaches as it supports a wide variety
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of parallel programming models: DIVA PIMs, with the appropriate interconnect, can be used in a scalable sys-
tem with an unlimited number of chips, not just single chip solutions.

The DIVA architecture and the material presented in this paper is distinguished from these previous approaches
in several ways: (1) unlike most of these other approaches, we consider an architecture where smart memory is
optionally used to improve performance of a standard host processor: (2) we develop a system that can support
in-memory manipulation of both regular and rregular data structures; and, (3) we consider the requirements
imposed on the system architecture and svstem software for mapping application execution between host and
memaory.

3.0 Overview of DIVA System Architecture

In Figure 1. we show a small set of PIMs connected to a single external host through a host-memory interface;
through this interface the host processor performs standard reads and writes, augmented as discussed in Section
3.3, The PIM chips communicate through separate PIM-to-PIM channels to bypass the syvstem bus with addi-
tional memory traffic from parcels used to spawn computation, gather results, synchronize activity, or simply
access non-local data. The separate interconnect is provided because PIM-to-PIM communication requires
ereater bandwidth than can be achieved with a conventional memory bus.

3.1 PIM VLSI Component

A PIM is a VLSI memory device augmented with general and special-purpose computing hardware. A PIM
may consist of multiple rodes, each of which are comprised of a few megabytes of memory and a node proces-
sor. The inset in Figure | shows a PIM with four nodes. The nodes on a chip share resources for communica-
tion with the rest of the system. As a result each chip contains a single PIM Routing Co-processor ( PIRC) and
a host interface. We anticipate that DIVA PIMs, like many other PIM chips, will be split roughly 60% memory
and 40% logic (reflecting the importance of memory density).

=

Within a single node, shown in Figure 2, the processing logic consists of a standard scalar microprocesor
including a floating-point unit and a special DIVA functional unit called an A-the-Sense-Amps Processor
fASAF). The kev idea behind the ASAP is to perform wide operations on aggregate ohjects stored within a row
of the local memory array. Rather than selecting a 32-bit object from the row as is done with conventional sca-
lar processing, the ASAP unit operates on up to 256 bils in a single processor cycle. This fine-grain parallelism
offers additional opportunity for exploiting the increased processor-memory bandwidth available in a PIM.
The ASAP unit can be used to perform bit-level operations such as simple pattern matching, or higher-order
computations such as searches, limited pointer chasing, and associative and commutative reduction operations.
Details on a related wide-word unit are discussed elsewhere [ Brockman®].

F ™ TNode Processor 1
I ASAT Scalar I PIRC
I Umit Unit I Interface m{' “hip
S | PiRC Interface
Unit
256-bit
Datapath
To Chip
Host Interface
Node Haost Unit
Lecal InterlateH‘
Memory

Figure 2: Processor-In-Memory Node Organization.
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3.2  PIM Interconnection

We anticipate PIM chips to be physically grouped as conventional memory chips, mounted on DIMM modules,
as shown in Figure 3. Bounded by host bus loading constraints, the number of PIM chips in a hosted cluster is
in the range of 32 to 64 chips, depending on how many PIM chips can be packed onto a DIMM module. The
PIM-to-PIM interconnect must then be amenable to the dense packing requirement of DIMM maodules. Obvi-
ously, low latency and high bandwidth are also desirable properties of this interconnect. Furthermore, this net-
work must be scalable to allow the addition or removal of modules from the system. This combination of
requirements favors a one-dimensional network. Although higher-dimension networks offer lower network
diameters, they are not easily scalable in all dimensions, especially in a densely packaged system. Also, the
dense packing achievable with one-dimensional networks allows more data signals per channel. Hence, the
slightly larger distances (in hops) of message traversals in a 32- or 64-hop one-dimensional network are com-
pensated by shorter messages (in flits). Furthermore, router cycle times are faster in one-dimensional network
routers hecause of simpler switching decisions.

The PIM interconnect requirements closely resemble those of interconnect in embedded scalable systems. We
therefore use the interconnection network of one such svstem, the Package-Driven Scalable System (PDSS)
[Steele9T], as a model for designing the DIVA PIM interconnect. The DIVA PIM interconnect is then a point-
to-point bidirectional ring using wormhole routing and the Red Rover routing algorithm [Draper9e] to elfect
deadlock-free routing. It routes fixed-sized packets and uses source routing to achieve low latency. The inter-
connect is implemented by PIM Routing Co-processor (PIRC) devices - one per PIM chip.

Later generations of DIVA systems are envisioned to contain hundreds and even thousands of PIM chips.
Clearly, the advantages of a flat ring topology do not extend to systems of this size. A more complex network
scheme will be needed. One possibility is another level of interconnect for connecting host/PIM clusters. To
provide adequate aggregate bandwidth, this higher-level interconnect will have to employ channels with greater
bandwidth than those of the PIM chips. The details of these channels are bevond the scope of this paper.

PIM-PIM Communication Channels Off-Module Channel Connector

PIM HPIM HPIM HI‘IM H PIM
’ g

Figure 3: PIM DIMM Module Organization.
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4.0 Required Mechanisms

We now present a collection of key mechanisms in DIVA.

4.1 Parcels

A parcel is the general mechanism for coordinating computation in memory, communicating data and perform-
ing synchronization across components of the DIVA system. a refinement of the parcel concept described pre-
viously [Brockman®%9]. Similar to an active message [vonEicken92]. a parcel incorporates data and an encoded
operation to apply to the data: a parcel is directed to a memory object, not a process or processor. A parcel has
the following four fields:

« pid: indicates which process issued the parcel.
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« object: the virtual address of the primary ohject the parcel will modify or access, used for routing the
parcel.

*  command: an integer encoding the action to be performed, which may refer to a compiled function
stored on the PIM.

*  grouments: (other than ebject), specilied as virtual addresses.

An obvious requirement on parcels is small size. to prevent overloading the host-to-memory interface and
PIM-to-PIM interconnect. In DIVA, we expect a single packet to consist of a header and 256 bits of pavload. A
parcel requiring more bits must be sent in multiple packets. A related requirement is that processing parcels
musl be efficient (see 3.2.1).

[n addition, protection must be provided on areuments, pid and command fields; the protection on memory
accesses cannot rely on standard host mechanisms as the parcels pass virtual rather than physical addresses to
the memory. Also, the order ol parcel processing must preserve sequential semantics, butl parcel execution
should be overlapped to exploit parallelism. To accomplish these goals, we employ oplional sequence numbers
on parcels when a specitic ordering of processing is required.

4.2  Host-Memory Interface

[n the initial DIVA prototype, an underlying assumption is that DIVA PIM devices can also serve as conven-
tional memory, so that they can be used as smart-memory coprocessors in a standard system. For this reason,
the PIM VLSI device is being designed with a host interface consistent with the standard memory interface
typical of commercial memories. This enables PIMs to be packaged in the form of DIMM modules with provi-
sions for top-plane interconnections to support the PIM-to-PIM communication fabric. However, unlike com-
mercial memories, computation activities give rise to new problems: how to communicale internal exceptions
and possible memory busy conditions to the host system. These issues are being addressed as part of the larger
system architecture.

5.0 Memory Model

Systems with smart memory resemble both uniprocessors (or small SMPs) with large memory, and large, het-
erogeneous multiprocessors. The semantics are made precise by the DIVA memory model, developed from the
following list of requirements:

* asimple virtual machine for both programmers and compiler writers:

* application-level visibility and control of data placement;

* high overall performance:;

* scalability to many PIM chips, larger PIM chips, and multiprocessor hosts:

*  compatibility with conventional memory models and memory interfaces:

¢ support for virtual memory (i.e., paging to/from disk); and.

* g host-independent PIM chip architecture.
These requirements look ahead toward future uses of PIM chips, augmenting all sorts ol systems and used to
accelerate all sorts of applications, both at the small and large scale.
5.1 Parcel Buffers
For high performance, applications must communicate with PIM chips without invoking the host operating
system. A conventional memory interface supports this naturally, but cannot generally guarantee atomicity or
ordering when caching and write bullers exist. Each PIM chip therefore has a second intelligent interface, the
Parcel Buffer, which is mapped into each process as a (roughly) parcel-sized piece of SRAM. The host OS
ensures each process uses a different physical address for the multiply-mapped buffer, so the interface can
identify the source of each transaction. Hardware in the interface transparently manages ownership of the
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buffer using a wait-free protocol [Herlihy9 1] that can be implemented simply at the application level without
supervisor slate interactions: this interface hardware ensures that access patterns are grammalically correct. To
communicate a parcel, a process reads or writes Tields in the bulfer, then performs a final read on a status field
to pass the parcel to the PIM chip internals. In the rare case of corrupted accesses, a [ailure status is returned,
and the application can retry.

5.2  Address Translation

Parcels, application code and data contain virtual addresses. For PIM processors to interpret these, they must
have access to translation information, or there must be some fixed relationship between virtual and physical
addresses. The latter option is simpler to implement, but was determined to be too restrictive. Each PIM thus
contains translation hardware, and tables managed by the host. Any virtual page can reside on any PIM. How-
ever, the hardware is simplified by the characteristics of the system. For instance, for performance, a PIM
needs to be able to rapidly determine il an address is local 1o its own memory bank, and find the physical
address if it is. However, if the address is not local and communication is required. the additional cost of the
non-local translation is negligible.

Each PIM therefore maintains translations for those virtual pages currently residing on it, plus part of a global,
distributed table (similar to a home node concept as presented in [Saulsbury95]). Non-local translations are
obtained by querying the distributed table, or, equivalently, submitting the virtual address in a parcel, for for-
warding to the PIM where it resides. Advantages of this approach are that the translation tables on each PIM
scale well; every address can be accessed in at most two parcel transmissions, and the application can option-
allv maintain location hints and use them to reduce this to a single parcel transmission in performance-critical

cases.
53 PIM Memory Organization

The DRAM in the PIM subsystem is the primary storage for the DIVA system, and can be treated physically as
a uniform, undifferentiated RAM. However, during operation the system uses the memory in three distinct
ways, making it helpful to organize the memory on each PIM node logically into three regions according to
whether it 1s used primarily by the host processor, primarily by the PIM processor, or significantly by both.
These regions may be either physically contiguous or interspersed. and memory allocation within these regions
can either be initiated by explicit system calls in the application, or undertaken at load time For all applications
by the loader or start-up code. A flexible combination of static and dynamic allocation is usually most conve-
nient for the user, but for this discussion assume explicit system calls are used.

An advantage of making this distinction is that different, optimized memory-management hardware can be
used on each of the regions. As modern processor architectures demonstrate[IBMMot94 ], there is no concep-
tual problem with having multiple translation mechanisms in place, as long as they provide consistent virtual-
to-physical mappings and access permissions.

Dumb Memory: Initially, the application is a normal {say Unix) process on the host. The various regions ol its
virtual address space (tvpically the user code, heap and stack and one or more kernel segments) are mapped as
usual to some set of pages in DRAM, with some possibly paged out to disk. IT the system memory contains
both ordinary DRAM and PIM DRAM, these normal pages can be mapped into the ordinary DRAM, since
they are never directly accessed by PIM processors. [T all memory is PIM memory, the system can simply note
that these pages are onlv accessed by the host, and that they need not appear in PIM-processor translation
tables. A major use of dumb memory will be application code for the host CPUL which is meaningless to the
PIM processors: also, many host processes will never require PIM services at all, and will remain in this con-
figuration.

Internal Memory: I an application elects to use the PIM processing, the first step 1s to allocate and initialize
aregion of memory on ¢ach node to be used by that node for its local processing needs. These include: a small
run-time kernel for parcel management, synchronization and exception handling: code for the application-level
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methods supported by the PIM: and storage for executing PIM programs such as buflers and stacks.

In practice, efficiency dictates whether this initialization step occurs at host boot time, application load time,
during application start-up, following an explicit svstem call. or transparently when the first PIM operation is
attempted; some combination of these initialization steps can be profitably supported. For instance, a basic
PIM kernel could be installed on each node at system boot time, as could code for any widely useful PIM
methods. Application load time is a good lime to install application-specific method code that is used fre-
quently: individual methods from a large system library could be loaded dynamically on demand during appli-

calion execution.

Liser-level code on the host never accesses this internal memory during normal operation. To the host, the inter-
nal pages appear within the supervisor region, like the kernel and its associated data structures. Moreover, the
host only needs to access them under exceptional conditions, e.g., application loads, service requests, and
errors. Access from the host is thus guaranteed to be infrequent, through trusted code with access to translation
tables. On the other hand, access to internal regions by the PIM processor needs to be highly efficient and well
protected, since it is used for everything from local OS code and data to execution stacks and working memory
for the many light-weight user-level methods launched in response to parcels during normal operation.
Omne can exploit these asymmetric requirements by adopting a memory-management approach for the internal
memuory that is very convenient for the PIM processor, but perhaps quite unrelated to the memory-management
hardware on the host. A particularly useful scheme, planned for the prototype, 1s to give each lightweight local
context on a PIM processor eight variable-sized segments or pages ol internal memory, each defined by virtual
and physical base addresses, size and access permissions. By convention, these are assigned to the following:

1. Supervisor-level kernel code (shared by all contexts on the node)

2. Supervisor-level kernel data and stack (shared by all contexts on the node)

3. User-level code (shared by all contexts in the same application})

User-level data {shared by all contexts in the same application)

S

User stack (unique to each context)

Miscellaneous (possibly unique to each context)

b

Supervisor-level parcel bufTer device (shared by all contexts on the node)
8. User-level parcel bufter device (shared by all contexts in the same application).

Translation of internal virtual addresses can be made extremely fast and efficient by adopting some simple con-
ventions, e.g., high bits of all the page virtual starting addresses are the same, the next three bits specify the
page number, and the size is a power of two. Then, the TLB simplifies to a look-up table, the translation infor-
mation for a lightweight context fits into 236 bits, and can be switched n one clock cycle. Since PIM nodes do
nol access each other’s internal memory, the same virtual address range can be used for internal memory on
every node, making PIM contexts relocatable from one node to another.

Global Memory: The next step in setting up to use the PIM features is to allocate DRAM on each PIM for use
as smart “global™ storage. This can be done at run time by a series of system calls such as
mem alleoc (pim node, wirtual address, size), which allocates aregion of memory of size
bytes on pim node and maps it al virtual addresa, an unmapped virtual address range within the
application address space. Unlike the dumb memaory, whose mapping is visible only to the host process, or the
internal memory, whose mapping is visible only to the associated PIM node and the host OS, the global mem-
ory is visible to the host process and to all PIM nodes involved in the application. Although only the host and
the local node where the data resides can access an element of global memory directly (1.e., by read and wrile
instructions), pointers to global objects are meaningful to all nodes and to the host, and can be communicated
freely within parcels. Once global memory has been allocated. the host process can set up any initialized data
by writing to il. In practice, global memory will make up the majority of memory in a dala-intensive applica-
tion using the PIM features. It is important that access to this memaory be efficient {rom both the PIM and the
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host, and this therefore presents the greatest implementation challenge. Address translation must be compatible
with both host CPL and PIM hardware. The page size must therefore be equal to or a multiple of the hardware-
supported page size of the host CPU. Also, each PIM node should ideally be able to hold in a fast TLB the
franslation information for all active global pages resident on it to avoid the frequent TLB misses that would
occur on an irregular application. This therefore suggests that global memory pages should be large: in the pro-
totype, one simplifying option under consideration is a single very large global page (per application) on each

node.

Parcel Buffers: The final step in invoking the PIMs is to request the host OS to allocate and map one or more
virtual parcel bulfers, for use in communicating parcels with the PIM system. Parcels are then sent to individ-
ual nodes to start the PIM computation. Finally, when the computation is complete, one of the PIM methods
communicates this to the host, typically by setting a flag in the global memory, and the host picks up the results
from the global memory.

[he overall memory structure for a typical DIVA application is shown in Figure 4. In the far left column is the

Internal memory for :g;
PIM kernel, [TTSI
nstalled  methods, IS0 IS1
[nternal memory for {Eﬁ
PIM user-level light- L]
weight processes =0 18]
umb memory for f-a=a
Dumb memory  [ol D%
kernel D=l

DS0
Dumb memory for H'[;
user code, heap and DU
stack DUo

- <0 =1

) o [ER] Ga o0 G5 1L
Global  pages o &3] oo Ds0 S o=l
PIM-processable €] Gl DUD Gl DUT

GO ¥} GO Gil Gl
Parcel Buffer FEI PB]

Host Process Vir- VirtualPhysical Virtual Physical
ual Address Space PIM node 0 address space PIM node | address space
Figure 4: Decomposition of a host process address space across multiple
PIM nodes. Shaded regions have supervisor-level protection.

virtual address space of a typical host application process, where each rectangle represents a page or segment
from one of the memory regions. Shaded pages are accessible only while in supervisor mode. The label indi-
cates whether the page is used for global data (G), dumb user or system pages (DU or DS) or internal user or
system pages (1L or [S), as well as the PIM node (0-3) where the page currently resides. The second column
shows the subsel of pages visible to a method executing on PIM node 0. The third column shows the subsel of
pages actually resident on node 0. The last two columns show the same information for node |. Note that glo-
bal pages are visible from all nodes, while internal pages are visible only on their local nodes, where they
appear at a common virtual address.
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4 Coherence Management

[n any system with distributed processing. the distributed information needs to be kept coherent, and a consis-
tent model of memory access must be chosen and maintained. Conventional NUMA and COMA models are
suboptimal for Irregular, data-intensive applications. Specifically, ina NUMA or COMA model, a reference to
remote data by a local node causes the remote data to be automatically moved or copied 1o the local node.
where it is made available under the same virtual address as the remote version. In general, the overhead of
supporting this model becomes excessive for irregular applications, where there is by definition great potential
for false sharing, and little temporal locality.

The philosophy in the DIVA system is therefore to move the computation to the data. rather than move the data
to the computation. At any one time, the data at a virtual address is located on exactly one PIM node, and there
are no cached copies on other PIM nodes. Global pages can be moved from one node to another for load bal-
ancing purposes, but this is a heavyweight operation that should be used infrequently and explicitly managed
by the operating system. Consistency of the distributed address translation table must be maintained, but since
this changes relatively rarelyv, software coherence methods are adequate.

During normal operation. therefore, data coherence issues do not arise between PIMs, and there is no need for
a sophisticated, hardware-supported coherence mechanism. The movement of code is a much simpler problem,
since code is read-only, and can be replicated easily. Moreover, the only references to code that get passed in
parcels are indirect references that index into a method table. so the translation mechanism for code references
is buill into the application. The result is a memory model that can be supported by fairly simple hardware in
the PIM nodes, independent of the host CPLU details.

The remaining coherence issue, namely between the PIM system and the host, is the most difficult. Individual
cache lines may be cached by the host processor(s). The simplest solution, adopted in this prototype, is to
alwavs explicitly flush PIM-accessible data, or keep it uncached. A more transparent approach is for each PIM
to track ownership of individual cache lines, and request writebacks from the CPU caches as necessary. The
hardware for this on each PIM is not excessive and scales well, so this is a suitable long-term solution. How-
ever, broader issues suggest it is premature to implement in our prototyvpe. As stated at the beginning of this
section, our goal is a memory model that is independent of which processor is used as a host: the mechanism
for requesting writebacks is processor specific, and usually involves the requestor driving the address bus. In a
large svslem with many potential requestors, this introduces significant arbitration, electrical drive, and porta-
hility problems. In the long term, it would be better to develop a standard (probably network-based) memory-
to-processor channel Tor this activity, which would find other uses in smart memaory systems.

Although the explicit flushing is a burden, either to the programmer or compiler, it is not expected to degrade
performance significantly. In practice, even with automated hardware, the user would probably obtain higher
performance in some applications by manually flushing cache lines anvhow. to minimize the number of write-
hack requests.

6.0 Developing Applications in DIVA

The success of a new architecture is highly dependent on the ease in which software can be developed Tor it. It
should be straightforward to develop correct programs, even if it is somewhat more difficult to effectively
exploit the performance-enhancing features of the architecture. DIVA offers a smooth migration path for devel-
oping applications. First, the applications programmer can begin with a standard sequential program, which
will run correctly with no modification by using the PIMs as standard memory. Then, either the compiler or
programmer can exploit the PIMs as smart memory in portions of the application where this is deemed profit-
able, gradually migrating the original sequential application to make full use of the DIVA architecture.

To the applications programmer or compiler, the abstract DIVA architecture appears very similar to a distrib-
uled-shared-memory multiprocessor. The host can serve as a master lo coordinate activities on the PIMs. Each
node on a PIM processor acts as a worker processor waiting for work, and possibly initiating work on other
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[Ms through the parcel mechanism. The memory associated with a PIM node can be thought of as its local
memaory. The PIM node can access a datum on other memory chips through a global address space without
need to know its exact location. Coherence of data shared across PIM chips is not guaranteed by the hardware
and must be managed by either the compiler or programmer, similar to what is required in the Cray T3E. Also
as with distributed-shared-memaory multiprocessors, locality of data accesses is very important to good perfor-
mance.

Because of these similarities to a distributed-shared-memory multiprocessor, most parallelizing and locality-
management compiler techniques and parallel programming paradigms can be leveraged for DIVA. Applicable
compilation techniques include automatic parallelization Tor both regular [Blume%6] [Hall%o] and nrregular
applications [Rinard27], and data and computation co-location [Anderson93]. Explicitly parallel programming
languages that permil some programmer control of locality are also applicable, such as High Performance For-
tran and its extensions for irregular applications, Olden [Carlisle25], and CC++|Foster95]. As discussed in
Section 4.1, the parcel mechanism is really a refinement, tailored to the DIVA architecture, of active messages,
which were developed for message-passing multiprocessor systems [vonEicken92].

While there are many similarities between programming for DIVA and parallel programming, there are several
important differences. One additional requirement is keeping the host cache coherent with the PIM memaories.
As discussed in Section 5.4, this is accomplished with explicit flushing, immediately prior to sending a parcel
from the host, of objects in the host cache that may be touched by the PIM computation. In keeping with the
above stated goal of making correct programs easy to develop, the required flushing can be optionally auto-
mated by the compiler through analysis of the object and arguments associated with the parcel. Further, DIVA
applications can exploil fine-grain parallelism using the ASAP functional unit for operations on aggregale data
objects, which demands a combination of compiler technology and a user development environment for
exploiting complex ASAP-oriented computations {e.g., string matching). Other high-level operations such as
memory management can be optimized for the PIMs to improve the locality of pointer-based computations. As
an example. when building a tree data structure in parallel, each PIM can locally allocate a subtree, with the
host sequentially connecting the subtrees in the upper level of the trees. Locality Tor each subtree is then

ensured.

An important component of the DIVA project is a large software effort to develop application programmer
libraries, and compiler and run-time system support. The DIVA compiler, either automatically or inresponse to
programmer specification, partitions computation and data across host and PIMs. This partitioning requires
that it must generate code that interfaces with the operating system to control data placement on the PIMs, gen-
erate code to load application-specific PIM code onto the memories, and also generate parcels in the appropri-
ate places in the code to mnitiate PIM computation, communicate and synchronize. This high-level code must
then pass through separate backend compilers: one for the host, for which we can use an existing native back-
end compiler; and one for the PIMs, which requires a DIVA PIM-specific backend that generates standard
RISC as well as ASAP instructions. There are also separate run-time systems for the host and PIMs. The host
run-time system performs similar functions to a standard architecture-independent parallel run-time library
(e.g.. Pthreads), managing threads and svnchronization. The PIM run-time system is a small, DIVA-specilic
system, primarily for parcel processing.

As part of the soltware development efforts, we are currently retargeting the Stanford SUIF compiler system to
DIVA, allowing us to take advantage of its wealth of compiler analyses for distributed-shared-memory
machines. In addition, we are developing an extensible approach to support compiler and programmer genera-
tion of ASAP instructions that are seamlessly integrated into the PIM backend. Since DIVA is targeting irregu-
lar computations, we are also investigating a memory management library for dynamic generation and
reorganization of irregular data structures.

7.0 Case Studies

To derive preliminary performance estimates for complete applications, we developed a simulator for the
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major system components of DIVA. The simulated architecture consists of a host processor, and a number of
PIMs interconnected via a PIRC ring network. We simulate computations executing on the host and PIMs
using Shade [Cmelik94]. Shade execules application programs and generates traces under the control of a user-
supplied trace analyzer. We simulate parallel execution in our experiments by recording the simulated time at
the beginning of a parallel section and setting the parallel execution time at the end of the concurrent execution
to be the maximum value of the simulated time by each of the participating PIM nodes. The Shade-based sim-
ulator does not directly model the PIRC interconnection. To account for network latency and congestion, we
generate traces of time-stamped network requests for each application, and use these traces as inputs to a net-
work simulator [Draper96]. The throughput and contention derived by the network simulator are then used as
parameters to the Shade simulator.

The PIM chips modeled in these experiments are much simpler than what was presented in Section 2. There 1s
a single node per chip, and we only consider applications that use standard scalar integer and floating-point
processing on the PIM nodes (i.e., no ASAP instructions). These simplifications reduce the contention for on-
chip resources, and allow us to get meaningful early results from the simple Shade-based simulation strategy.
We anticipate that the multiple processing nodes per PIM chip and the ASAP functional units planned for the
actual DIVA implementation will yield much better on-chip computation rates, albeit with additional cosls due
to contention for internal memory banks and PiRC channels.

[n our simulations, each PIM node consists of a PIM processor, a 2M-byvte memory bank, a host interface and a
PIRC network interface. Since processor technology is optimized for speed and DRAM technology is opti-
mized for density and vield, the PIM processing logic 1s expected to be slower than the host processor logic.
Based on projections, we assume that the PIM processor cycle is twice the host processor cyele. The PIM node
memory bank is organized as 8192 2K-bit memory rows, and the DRAM interface provides a 256-bit sub row
per memaory access. We assume the first access to a 2K-bit row (random-mode access) takes 2 PIM cycles, and
cach subsequent access to the same row (page-mode access) takes | PIM cycele. These parameters are based on
current memory speeds [ Kogge9 8],

The host has separate instruction and data on-chip caches. and a unified off-chip second level cache. We model
a parcel issue as a sequence ol wriles to specific memory addresses, the last of which triggers the delivery of
the parcel. Coherence between the caches and memory is enforced by software (e.g., the compiler), using an
instruction to flush data from the cache. At a flush instruction, the simulator invalidates the cache line and, if
the line is modified, writes it back to memorv. We summarize the simulation parameters in Table 1. We now

Cache Parameter | Instruction L1 Data L1 Data 1.2
size 32K hytes 32K bytes I M bytes
associativity 2 2 2
Host Caches line size 64 bytes 32 bytes 32 bytes
replacement LR LRU LRU
write policy write back write back write back
fatency (hig L eyele I eyele 10 cyeles
fatency (miss) [0 eyeles 10 eyeles 100 cycles
PIM Node processor cycle 2 evelest
menory size 2 M bytes
MENary row size 256 bits
memary latency | u}'ulctt page mode), 4 uyclu_\'t {random mode)
PiRC Network channel width 32 hits
network cpele 4eveles”
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a. Host processor eyeles
Simulation Parameters used in Application Studies.

present results on three applications evaluated with this simulation methodology.
7.1  NAS Sparse Conjugate Gradient (CG)

CG implements a linear system solver using a conjugate gradient iterative method. Its main data structures are
three very large arrays ol floating-point double-precision values. The main computation consists of a sparse
matrix-vector product (see Figure 5(a)) and accounts for about 80% of the total sequential execution time. The
computation is structured as a single loop performing commutative and associative updates to array Y indexed
by the values in the ROWIDX array. The sparseness of the computation is derived from the indirection of the
accesses o the Y arrav whereas both arrays A and X are accessed using simple loop indexing functions.

To effectively map this computation to DIVA, we parallelize the execution of the sparse matrix-vector product
by exploiting the commutativity and associativity of the addition operations. In this version, each PIM node
has a local copy of array Y (named PRIV_Y). and performs its updates on its own private copy: after all PIMs
complete their local computation, the local results are merged using a parallel reduction algorithm. The parallel
reduction algorithm ensures that there i1s no network contention during the communication phase. However,
since each PIM node has to communicate its copy of array Y to other nodes, the total amount of communica-
tion increases with the number of PIMs, as well as the number of steps of the parallel reduction. This example
makes use ol a lightweight run-time system and the parcel communication mechanism to generate and manage
concurrency. The basic code generation strategy is for the compiler to split the computation between the host
and the PIM nodes and to initiate the computation on the PIMs by sending parcel, using the SeadParcel primi-
tive. PIM nodes are activated by the receipt of a given parcel and proceed to execute the code associated with
it. This code might in turn generate other concurrent computation on the same or on other PIM nodes. The host
can enforce lermination of a given computation using an explicit barrier synchronization construct ( Barrier) or
implicitly through memory. Also included in this run-time system is a Flusf primitive that allows the compiler
to maintain the consistency of the data between the host caches and the PIM nodes.

(a) Original Loop Nest.
DOJ=1,N
DO K =COLSTR[]], COLSTR[J+1]-1
YIROWIDXI[K]] = YIROWIDXI[K]] + A[K] * X[J]

(b) DIVA Host Program.
Flush(Y);
PartitionSize = Sizeof (ROWIDX) / NumPimNodes;
for (1=0; 1I=NUM_PIMNODES: i++) {
Send_parcel (ROWIDX[I*PartitionSize], LoopBody, PartitionSize,
A[T*PartitionSize|, PRIV_COLSTR[0,I], PRIV _X[0,1].Y):
}

Barrier();

{c) Code for PIM node command LeapBody.

340



BarrierEnter();
for (j=1; j=<=N;j++) {
Lower = Max(PRIV_COLSTR[]], PIMID*PartitionSize);
Upper = Min(PRIV_COLSTR[J+1]-1, (PIMID+1) *PartitionSize-1);
for (i=Lower:; i<=Upper; i++) {
K1 = K - PIMID*PartitionSize;
PRIV Y[ROWIDX[K1]] = PRIV_Y[ROWIDX[K1]] + (A[K1] * PRIV_X[I])

H
ParallelReduction(Y,PRIV_Y ,PIMID NUM_PIMNODES);
BarrierRelease();

Figure 5: CG Matrix-vector product and its mapping to DIVA,
Figure 5(b) and Figure 5(c) present the corresponding code for the DIVA architecture, which makes use of the

parcel and synchronization primitives to orchestrate the computation. Figure 6 illustrates graphically the data
mapping for the various arrays in this computation for a system with 4 PIM nodes.

PIM O PIM 1 PIM 2 PIM 3

partitioned A | | | |

\ __d—"___:___-v—-_—__—-_—_—-_v

replicated  COLSTR |/| | |

Pill'lil.il.ll'll.'l.i ROWIDX | | I I
s P | | | | |

privatized PRIV_Y | | [ ] | |
| | | R L] I I

] [ [] []
partitioned Y
replicated X |

I
Figure 6: Data Mapping on DIVA for CG.

Figure 7 illustrates simulation results Tor this application. We separate original sequential execution inlo sev-
ral components in Figure 7(a). The host busy category accounts for the time spent executing instructions. The
1 and L2 miss stall categories represent time spent waiting for memory accesses to be satisfied from either the
cache or main memory. In the version of the program that executes the matrix-vector product on the PIMs,
we show time spent in the host and on average in one PIM, and we include additional categories (the host is
idle during PIM execution, so this is an accurate reflection of overall execution time)y. The coherency overhead
refers to time spent by the host flushing cache lines prior to execution on the PIMs. Note that additonal coher-
ency overhead is charged as 1.1 and 1.2 cache misses in the host when PIMs are used; by flushing data from the
cache prior to PIM computations, extra cache misses in the host may occur in later host computation. This
cache miss effect due to flushing is not significant in the programs presented here because the irregular
accesses in the PIM computations were polluting the host cache when executed on the host. Additional catego-
ries show time spent in the PIMs, including PIM-to-PIM communication overhead and time spent in local
memaory stalls.
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Figure 7: Execution Breakdown and Speedups for CG.

As the results in Figure 7(a) indicate, the original application suffers significantly from poor cache locality
with overall L1 and L2 cache miss rates of 15% and 20%. respectively. When the matrix-vector product is exe-
cuted on the PIMs, much fewer accesses to array Y are brought into the host, and the miss rates on L1 and 1.2
cache were reduced respectively to 10% and 7%. As Figure 7(a) shows, this contributes to a significant reduc-
tion of the application time waiting for results from memory. Figure 7(b) shows the overall application speed-
ups for different numbers of PIM nodes as compared to the entire application executing on the hosl. At 16
PIMs, the application speedup is more than & over the original sequential execution time. While this applica-
tion scales very well for up to 16 PIM nodes, the problem size we use is oo small relative to the overhead of
the reduction computation to scale much beyvond 32 PIMs.

7.2 Hash-Based Natural Join

The Natural Join is a fundamental operation in relational database systems. It consists of generating all possible
combinations of tuples for two relations R and S with a common attribute A. In the implementation used in
these experiments, the algorithm builds a hash table for each of the relations R and S indexed by the attribute A.
Then, for each hashed value in the table, the algorithm joins all tuples of the two relations that have a common
value for the attribute A.
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{a) Execution breakdown (k) Orverall Speedup {c) Speedup for Join phase

Figure 8: Execution Breakdown and Speedups for Natural Join.
The strategy to map this application to DIVA s to distribute the hash table along contiguous blocks of the table

entries. Each PIM node has a set of consecutive entries of the hash table and the hash-table collision lists corre-
sponding to each of the table entries it owns. Once the host processor has constructed the distributed hash table,
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natural join operation proceeds by having each PIM node computing a local natural join operation. At the
end, the host simply scans the partial hash tables local to each PIM node to read the results.

Figure 8 shows performance results when the first phase, constructing the local hash tables, is performed by the
host, and the second phase, the join of local hash tables, executes in the PIMs. The speedups for the join phase
of the computation are superlinear, as shown in Figure 8{c). These superlinear speedups result from the com-
bined effects of the smaller memory latencies at the PIMs, as compared to the cache miss latencies sufferad by
the host, and the parallelism obtained by distributing the computation across PIMs. Due to Amdahl’s Law, the
averall speedup 1s limited, as the first phase, which accounts for about hall the baseline execution time, is exe-
cuted sequentially on the host. Even more speedup is possible from two sources, both of which we are explor-
ing: (1) building portions of the local hash table in parallel on the PIMs and merging the results; and, (2}
performing in parallel on the AS AP unit the comparison of a key from the R-tuple with that of several S-tuples
with the same hash value.

7.3 Object-Oriented Database Benchmark (007)

The 007 application implements a representative object-oriented database for CAD applications. The database
schema defines several one-to-one and one-to-many relationships among database objects. These objects con-
sist of documents, manuals and base or complex assembly components. Each complex assembly component is
defined hierarchically in terms of other base or complex assemblies or base assemblies. Base assembly compo-
nents are defined in terms of composite parts which in turn consist of more than one library atomic part. Each
of these ohjects have specific attributes such as a unique identifier, creation date and other type-specific fields.

This database application was originally developed at the University of Wisconsin to study the performance of
various database management systems [007]. We have ported this application to a C++ stand-alone program by
implementing the dictionary and relations abstraction using hash-tables and linked lists in a total of 9,000 lines
of C++ code. Our performance evaluation concentrates on a specilic database query, query #6. Query #6 finds
all assemblies (base or complex) B that reference (directly or transitively) a composite part with a more recent
build date than B's build date. This query is implemented using set operations over the database relations and
extensively uses the iteration abstraction from C++ to access successive objects in a given relation.

Besides the overall organization of the database objects in a graph data structure, the database schema also
relies heavily on singlv-linked and hash-table pointer-based data structures for indexing of the ohject in each
category (documents, manual, base assemblies, etc.). The primary access pattern over the indexing structure
traverses a singly-linked list or a hash-table, searching for a particular subset of objects matching a given pred-
icate. In addition, the application also traverses the overall graph structure of the objects in the database. Such
traversals perform poorly on conventional systems because they exhibit almost no temporal reuse ol memory

accesses, and there is little spatial locality due to the way the pointer-based data structures are created.

To take advantage of the PIM architecture, we perform two key transformations on the original application.
The first transformation takes advantage of the lact that the computation accesses a sel of objects; the order in
which the elements of the set are accessed by the application is irrelevant, so these accesses can be performed
in parallel. The second transformation restructures the code so that the PIM nodes traverse the linked data
structure that represents the relations in the schema and selects the set of objects the computation needs to
access. Each PIM selects a subset of the objects in the relation from its local memory only. The host then gath-
ers the partial results and constructs a larger set. The host is responsible for any updates to the storage. Figure 9

343



shows the execution time breakdown and speedups for 007,
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Figure 9: Execution Breakdown and Speedups for 007,

The resulls show an impressive superlinear speedup. As the execution breakdown reveals, this result is due to
the severe performance impact of the L2 miss stalls (almost 80% of the sequential computation for this query)
for the case where only the host executes the computation. When the computation is partitioned across the PIM
nodes, each PIM fetches data from its local memory and communicates very infrequently. The overhead of
coherence is also negligible for all runs, as the query does not update the ohjects in the database but rather col-
lects overall statistics. As a result, the performance scales well up to 16, For 32 PIM nodes, speedup, while still
impressive, trails off a little due to the relative frequency of communication compared to computation for this

data set size.
8.0 Conclusions and Future Work

This paper has described the DIVA system, an architecture incorporating PIM devices as smart memaories to
one or more external host processors. Other distinguishing features of DIVA include its PIM-to-PIM intercon-
nect and explicit support for in-memory operations on irregular data structures. In this paper, we presented sys-
tem-level requirements for in-memory acceleration of irregular applications. We presented three case studies,
sparse conjugate gradient, natural join and an 007 database query, to demonstrate how irregular applications
can be mapped to the DIVA architecture. High-level simulation results show a speedup for all three applica-
tions, resulting from increased processor-memory bandwidth, much more effective use of cache on the host
processor, lower latency accesses and parallelism.

Future descriptions of the DIVA project will include details of the PIM VLSI device, architecture studies using
a high-fidelity system simulator based on RSIM, the DIVA compiler and run-time systems, and further applica-
tion studies.
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A Fast, Simple Router for the Data-Intensive Architecture (DIVA) System

Chang Woo Kang and Jeffrey Draper
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Albsiract—This paper presents a fast, simple router design for
implementing the Red Rover algorithm for a bidirectional ring.
This design is very suitable for the Data-Intensive Architecture
(DIVA) system, a system which demonstrates the benefits of em-
bedded DRAM technology, because of its high performance as
well as simple architecture and low cost. The key attributes of this
router are one clock node-to-node latency, high channel through-
put, and simple hardware implementation. The router architec-
ture employs short-cut FIFO data paths, which makes the router
speed independent of the channel buffer size (in terms of flits).
A prototype implementation of the router achieves a maximum
channel bandwidth of 5.12 Gb/s and runs at 80 MHz using 3.3V
CMOS signaling in (,2tm technology. This high throughput and
low latency were achieved without resorting to the use of complex
high-speed signaling technologies.

[. INTRODUCTION

Embedded DRAM technology 1= growing in popularity, as it
appears to be a promising solution to the increasing gap be-
tween processor and memory speeds [6]. Integrating proces-
sor logic and memory in processing-in-memaory (PIM) chips
offers dramatically increased memory bandwidths {(up to 2 or-
ders of magnitude) over comventional systems. Furthermore,
memory latency is also reduced because internal memory ac-
cesses avold the delays associated with communicating off
chip. The Data-Intensive Architecture (DIVA) system aims (o
exploit this technology by combining PIM devices with one
or more external host processors and a PIM-to-PIM intercon-
nect [9]. The DIVA system design imposes a unique set of
requirements on the PIM-to-PIM interconnect. PIM chips will
be physically grouped as conventional memory chips. mounted
on DIMM modules. The number of PIM chips in a hosted
cluster is therefore in the range of 32 o 64 chips, depending
on how many PIM chips can be packed onto a DIMM mod-
ule. The PIM-to-PIM interconnect must then be amenable 1o
the dense packing requirement of DIMM modules. Low la-
tency and high throughput are also desirable properties of this
interconnect. Furthermore, this network must be scalable to al-
low the addition or removal of modules. This combination of
requirements favors a one-dimensional network. Recently im-
plemented routers such as SGI SPIDER [5] and the Cray T3E
network router [8] are not suitable to be embedded in PIM de-
vices because of complexity and size. The resulting PIM Rout-
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ing Component (PIRC) is a one-dimensional wormhole router
which implements the Red Rover routing algorithm to effect
deadlock-free routing in bidirectional rings [1], [3]. The Red
Rover algorithm provides a more even, symmetric distribution
of message traffic among virtual channels in a bidirectional
ring and therefore attains lower latencies and higher through-
put than Dally’s spiral algorithm [4]. Additionally, the PiRC
routes fixed-s
low latency. The PIRC architecture is presented in detail in
Section 11, Section 1. describes implementation and perfor-
mance issugs. Simulation scenarios for testing functionality
are presented in Section IV, and concluding remarks are given
in Section V..

e packets and uses source routing to achieve

Il. ROUTER ARCHITECTURE

Because it employs the Red Rover algorithm, the PIM Rout-
ing Companent (PIRC) has a very simple architecture and may
be viewed as two identical routers which are ime-multiplexed.
e router operates on the rising transition of the clock while
the other operates on the falling transition. In this manner,
two wvirtual channels (A and B) are time-multiplexed onto
each physical channel. Each virtual router contains controlling
logie, consisting of an input controller, switch, and output con-
troller, and short-cut FIFO data paths (see Figure 1). A channel
input controfler recetves control signals from a sender and gen-
erates control signals for storing data into a short-cut FIFO,
The switch and owtput controller determines to which output
port input data should be forwarded and arbitrates fairly among
contending requests for a particular output port. The handshal-
ing protocol between sending and receiving PIRC channels, de-
seribed in Section A, is also very simple and efficient.

Other factors also contribute to the simplicity of the PiRC
architecture. A packet is constrained to a fixed length of ten
32-bit flits. and the phit size is the same as the flit size. All op-
eration including receiving, switching, arbitrating, and sending
is done in a half clock eyvele. Thus, only one clock 1s needed for
a flit to traverse from one node to the next in the non-blocking
case. The PIRC implements wormhole routing [7] so that flits
of a blocked packet remain in place in the network channels.
However, each PIRC FIFO contains enough space to buffer a
complete 320-bit packet. This ability simplifies the handshak-
ing so that handshakes need only occur on packet boundaries
rather than on every fit.
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Fig. 1. PIM Routing Component { PIRC) Block Diagram

Figure 2 shows the internal interface for one virtual level of
the PIRC (the other level is identical ). This figure shows how
the FIFOs, mput controllers(INC), switches{SW). and output
controllers(OUTCpinteract For the positive(+), negative(- ), and
processing elementiPe) directions. Nole especially the switch-
ing and merging combinations in the data paths. A packet en-
tering the {(+) FIFO mav continue in the (+) direction or exit
the network through the Pe port. Similarly, a packet entering
the (-} FIFO may continue in the (-} direction or exit the net-
work through the Pe port. Finally, a packet which 1s injected
via the Pe FIFO may enter the network via the (+) or (=) port.
These routing restrictions result in 2-way switchers and 2-way
mergers at every point of contention. This artifact simplifies
the router design. requiring the design of only one merge and
i element that are then replicated as needed. The SF
and fT signals are send and ready handshaking signals for the
input channels, while the S and 0 signals correspond to
output channels. More detail about their operation is given in

the following section.
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Fig. 2. PiRC Internal Interface
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A. Handshaking Protacol

The handshaking protocolis really simple and efficient. First,
note that the ST and B signals of a receiving PIRC channel are
connected to the SO and JCP signals, respectively, of a neigh-
boring sending PIRC channel. The receiver keeps asserting the
T signal as long as its corresponding FIFO is not full. The
sender keeps sampling the corresponding J8¢€) signal at every
edge of the clock and starts sending a pending message when-
ever the receiver is ready. By using this protocol. the sender
constantly monitors the state of the receiver and does not waste
time to explicitly request the status of the receiver FIFO. As de-

picted in Figure 3, this protocol makes it possible for the sender
to make a decision to send data as soon as an asserted J3) is
sampled. To indicate 1t 1s sending data, the sender asserts S,
and the receiver latches DTN data into the FIFO upon sam-
pling the corresponding asserted S signal. The recerver then
latches data on the next nine clock cycles to receive the entire

packet.

SE

L ] sI

DOUT, X b4 DN

Fig. 3. Handshaking between a sender and a receiver

B. Shori-Cut FIFO

In order to achieve high-speed data transmission along the
physical channel, f;
essential. A previous implementation of a Red Rover router,
the PDSS rowter | 2], specified a simple controller and complex
flit buffer design and is suitable for only a small number of flits
per packet. In the PDSS router, there are a large number of
flit buffers that can drive the final output stage bus, as shown
in Figure 4. This arrangement results in a large capacitive
load. The controller is, however, very simple such that finite
state machines without peripheral logic are sufficient for con-
trolling the register-tristate buffer pairs. In contrast, the PiRC
implements a complex controller and simple FIFOs in order
to accommodate a large number of flit buffers in the channel

1st switching activity between channels 1s

butfer. In fact, the output stage load capacitance is indepen-
dent of the number of flit bulfers in a short-cut FIFO because
only the top element of the FIFO is capable of driving the out-
put stage bus. This characteristic makes the design very flex-
ible with regard to channel size and is important as different
package tvpes impose different pin-count. and therefore chan-
nel size, constraints. With this design, every flit in the FIFO
shifts toward the top of the FIFO as long as the path is not
blocked. Also. incoming flits are placed in the hirst empty it
buffer (from the top of the FIFO). Figure 5 illustrates the cell
of the FIFO, block diagram. and an example of flit movement.




Fig. 4. Channel Buffer Design:(a) Register-Tristate Buffer in PDSS Router
and () Short-cut FIFO in PIRC
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Fig. 5. Short-Cut FIFO: (a) FIFO Cell, (b) Block Diagram, and (¢) Movements
of Flits

The cell in (a) has two data inputs, one from the neighboring
fitin the FIFO (NGH) and the other from the external input for
this router channel{EXT). The decoder in (b) generates proper
control signals for the FIFO based on current conditions and a
write pointer indicator. (cj is an example showing the move-
ment of flits. Until T3 there is no blocking: therefore, the flit
in it buffer 0 goes out and the other flits shift toward the top
of the FIFO so that the FIFO depth is constant. New flits from
the external input are loaded into flit buffer 2 (this example as-
sumes some residual flits exist in the FIFO mmtally). Flits do
not shift if the output path is blocked. as shown during T4, T3,
and Te, However, the write pointer increments so that subse-
quent incoming fits begin to fill up the FIFO. When the path
becomes unblocked, flits drain out as shown from T7.

In order to keep track of the header flit of a packet, the SF
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signal flows through a one-bit FIFO as the header flit moves.
The operation of this one-bit FIFO is identical to that of the
data FIFO described above, This signal becomes the output
signal SC) in the final output stage, indicating that the router
channel is sending a header flit of a new packet.

C. Input Controller

The input controller, shown in Figure 6, is simple counter-
based logic that directs the loading of flits into the short-cut
FIFO. When the mput controller samples an asserted SF sig-
nal. it begins latching the flits of an incoming packet. The
upidown conmter dynamically changes the write pointer value,
which alwayvs pomts to the first empty space in the FIFO, as the
router reads and writes flits. The wen (write enable) genera-
tor causes the up/dowmn counter to increment the write pointer
value when ST arrives from the sender. The ren (read en-
able} generator is activated when the output controller starts
forwarding flits from the FIFO to an output channel, and it
also prevents the reading of garbage in an empty FIFO. The
counter operates at both clock edges so that it can increase the
write pointer at the rising edge when a new thit i1s written and
decrease the pomter at the falling edge when a flit 1s read from
the FIFO (these clock edges apply for A virtual channels

for B virtual channels, the opposite clock edges apply). The

Jull-empty detector indicates the status of the FIFO. The Ff

handshaking signal is merely the inverse of the full signal.
As mentioned earlier, the decoder translates the write pointer
value into proper control signals for the FIFO.

WG write-enable generator]

RG  read-enable generator

UDC upidown counter

FED full/lempty detector

DCD  decoder for translating|
counter output to FIFO
control signals

FEI _Du— u

read S
dk
empty
RG o
u s
blocked :I:ED( L
Sel, En

Fi

2. 6. Input Controller

D Switch and Cutput Controller

The cutput contraller samples [0 at every clock edge so that
it can send a pending packet as soon as possible. Once Fi(3 is
asserted and detected by the output controller, the header flit
of a pending packet and S0 are sent immediately. While flits



are being transmitted to the receiver, the write pointer of the
sending FIFO decrements if there are no incoming flits from
the neighbaring PIRC. On the other hand. the pointer keeps
pointing to the same flit buffer in the sending FIFO if the send-
ing FIFO) 1s simultaneously receving data from its neighbor.
The switch determines the direction in which a packet is to be
forwarded. The first Mt of a packet, the header, contains rout-
ing information for the switch. The header 1s unary encoded
such that the number of hops a packetis to traverse is indicated
by the number of 1's set in the header. The header is shifted
at each hop so that this value is decremented. Therefore, the
switch simply inspects the first bit of the routing header to de-
termine which output port to request for a given packet. Using
a first-come-first-served policy. the output controller arbitrates
Fairly between requests from two FIFOs contending for usage
of the same output physical channel. If contending requests
arrive in the same clock cyvele to an idle output controller, an
arbitrary selection is performed: however, the FIFO which is
not granted access during this arbitration is guaranteed access
when the current FIFO completes based on the first-come-first-
served policy.

[T, IMPLEMENTATION AND PERFORMANCE

The PIRC design was begun by behavioral modeling in
VHDL and compiled with Synopsys. Cascade EPOCH was
used for routing and placement as well as layvout generation for
a prototype implementation. Control blocks were synthesized,
while the short-cut FIFO was generated using custom lavout
1o achieve high density. We tested our design at the behavioral
level, pre-synthesis level, and post-synthesis level with Synop-
sys, and transistor level with Powermill.

The resulting PIRC prototype layvout is for the HP 14b process
available through MOSIS. This process uses Oaum, 3-layer
metal CMOS technology. The PIRC has a die size of 2.76 mm
X 236 mm and contains 73,276 transistors. Simple hardware
based on an eflicient routing algorithm allows us to achieve a
clock frequency of 80MHz. The router operates on both clock
edges. leading to a channel bandwidth of 5.12G0s. Only one
clock is required for a flit to move from one node to the next,
resulting in a node-to-node delay of 12.3ns. Figure 7 shows
the layout of the PIRC, placed and routed with the floor plan of
Figure 1. Although this prototype achieves respectable perfor-
mance, we expect performance o improve significantly when
we migrate to a currently available embedded DRAM process
using 0.25um or even 0.18pum technology, such as the IBM
SA27-E or TSMC process.

IV, SIMULATION

Five critical scenarios were used to verify the PFIRC design.
The external PIRC connections used for simulation are shown
in Figure 8. This configuration allows short-cut FIFOs (o
be cascaded together so that one FIFO essentially feeds an-
other. The header flit of a packet 15 set in simulation to specify
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Fig. 7. Layout

whether the corresponding packet travels from the (Pe) FIFO
to the (+) FIFO or the (-) FIFOQ. Test vectors are injected on the
Tester terminals indicated in Figure 8, which essentially serve
as processing element signals. The scenarios are as following:

RESET T
CLK
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wownn

o

e
R PoTr
Et o
awn wone

e R

Fig. 8. Router Configuration for Testing

TESTER

I. Two messages move back-to-back without blocking.

I

. Two messages move back-to-back. The first message is
blocked until the {(+.-) FIFC 1s full. Consequently, the
second message is blocked in the (Pe) FIFO and starts
filling it. Then. the first message becomes unblocked and
drains outl. As soon as the frst message starts moving out,
the second message follows it along the path.

led

Two messages move back-to-back. The first message is
blocked until the (+.-) FIFO gets half~way full. and then
the first message drains out.

4. The first message is blocked until the (+.-) FIFO fills half-
way, and when the first message starts draiming out of
the (+,-) FIFO, the second message is injected to the (Pe)
FIFO from the tester. Due to the short-cut FIFO design,
the second message quickly traverses the (Pe) FIFO to
trail the first message.



3. Two packets in (+.-) FIFO and (Pe) FIFO request the same
channel concurrently. This scenario ensures that fair arbi-

tration is performed when resolving conflicts.

The FPiRC performed successfully for all possible combina-

tions of the above scenarios for two sets of virtual channels.
V., CONCLUSION

A fast, simple router for the Data-Intensive Architecture
(DIVA) system has been presented. This device, the PIM Rowut-
ing Component (PIRC). implements the Red Rover routing al-
gorithm to achieve high performance with minimal complexity.
The PIRC has advantages of simple logic, one clock node-to-
node delay, high channel throughput, and robust speed con-
sistency, regardless of the number of flit buffers in a channel
buffer. This combination of attributes makes the PIRC ideal
for the DIVA system.
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Abstract

In this paper, we describe an algorithm and implementa-
tion of locality eptimizations for architectures with instruc-
tion sets such as Intel’s SSE and Motorola’s AltiVec that
support operations on superwords, e, aggregate objects
consisting of several machine words, We treat the large su-
perword register file ay a compiler-controlled cache, thus
avaiding unnecessary memory accesses by exploiting reuse
in superword registers. This research is distinguished from
previous work on exploiting reuse in scalar registers be-
cause it considers not only temporal but also spatial rewse.
As compared to optimizations to exploit reuse in cache,
the compiler must also manage replacement, and thus, ex-
plicitly name registers in the generated code. We deycribe
an implementation of our approach integrated with a com-
piler that exploits superword-level parallelism (SLP). We
present a set of results derived auwtomatically on 4 multinte-
dia kernely and 2 scientific benchmarks. Our vesults show
speedups ranging from 1.3 10 2.8X on the O programy ay
compared to using SLP alone, and we eliminate the major-
iy of memory aocesses.

1 Introduction

In response to the increasing importance of multime-
dia applications in embedded and general-purpose com-
puting environments, many microprocessors now incorpo-
rate an expanded instruction set and architectural extensions
specifically targeting multimedia requirements. The core
component of such architectural extensions is a functional
unit that can operate on aggregate objects, performing bit-
level operations, or SIMD parallel operations on variable-
sized fields in the object (e.g., 8, 16, 32 or 64-bit fields). If
the aggregate objects are larger than the size of a machine
word, then they are called superwords [20]. Examples in-
clude Motorola's AltiVec and Intel’s SSE. a descendant of
MMX. If the same size as the machine word, then individ-
ual fields are referred to as subwordy [22]. A related class

of architectures employ processing-in-memory { PIM) tech-
nology to exploit the high memory bandwidth when pro-
cessing logic is combined on chip with large amounts of
DRAM: several PIM-based architectures rely on superword
parallelism to make more effective use of available memory
bandwidth [2, 17, 3, 11].

While multimedia extension and related architectures
have been available for some time. convenient method-
ologies for developing application code that targets these
extensions are in their infancy. There is recent com-
piler research for such architectures to automatically exploit
superword-level parallelism, performing computations or
memory accesses in parallel in a single instruction is-
sue [20, 27, 8, 10, 1].

In this paper, we recognize an additional optimization
opportunity not addressed by this previous work. An im-
portant feature of all such architectures is a register file of
superwords (e g., each 128 bits wide in an AltiVec), usually
in addition to the scalar register file. A set of 32 such su-
perword registers represents a not insignificant amount of
storage close to the processor. Accessing data from super-
word registers, versus a cache or main memory, has two
advantages. The most obvious advantage is lower latency
of accesses; even a hit in the L1 cache has at least a 1-cycle
latency. Accesses to other caches in the hierarchy or to main
memory carry much higher latencies. Another advantage is
the elimination of memory access instructions, thus reduc-
ing the number of instructions to be issued.

In this paper, we treat the superword register file as a
small compiler-controlled cache. We develop an algorithm
and a set of optimizations to exploit reuse of data in super-
word registers to eliminate unnecessary memory accesses,
which we call superword-level localitv. We evaluate the
effectiveness of these superword-level locality (SLL) op-
timizations through an implementation integrated with the
algorithm for exploiting superword-level parallelism (SLP)
presented in [20].

Our approach is distinguished from previous work on in-
creasing reuse in cache [9, 12, 14, 15, 16, 19, 28, 30], in that
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Table 1. Number of array accesses under different optimization paths.

the compiler must also manage replacement, and thus, ex-
plicitly name the registers in the code. As compared to pre-
vious work on exploiting reuse in scalar registers [30, 5, 23],
the compiler considers not just temporal reuse, but also spa-
tial reuse, for both individual statements and groups of ref-
erences. Further, it also considers superword parallelism in
making its optimization decisions. Exploiting spatial and
group reuse in superword registers requires more complex
analysis as compared to expleiting temporal reuse in scalar
registers, to determine which accesses map into the same
superword.
The contributions of this paper are as follows:

« An algorithm for exposing opportunities for compiler-
controlled caching of data in superword register files.

« A description of a set of optimizations, which in ag-
aregate we call superword replacement, for exploiting
superword register reuse.

o Experimental results, derived automatically, compar-
ing performance of six benchmarks/multimedia ker-
nels optimized for parallelism only, SLP, and opti-
mized for both parallelism and superword-level local-
ity. Our results show speedups ranging from 1.3 to
2.8X as compared to using SLP alone, and we elimi-
nate the majority of memory accesses.

The remainder of the paper is organized into 5 sec-
tions. Section 2 motivates the problem and introduces
terminology used in the remainder of the paper. Sec-
tion 3 presents the main superword-level locality algorithm,
which performs a set of transformations and an optimization
search that exposes opportunities for reuse of data in super-
word registers. Section 4 presents optimizations to actually
achieve this reuse of data in superword registers. Section
5 presents experimental results derived automatically by an
implementation in the Stanford SUIF compiler. Section 6
discusses related word and Section 7 presents conclusions
and future work.

2 Background and Motivation

In many cases superword-level parallelism and
superword-level locality are complementary optimiza-
tion goals, since achieving SLP requires each operand to
be a set of words packed into a superword, which happens,
with no extra cost, when an array reference with spatial
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reuse is loaded from memory into a superword register.
Therefore, in many cases the loop that carries the most
superword-level parallelism also carries the most spatial
reuse, and benefits from SLL optimizations. In this paper,
we achieve SLL and SLP somewhat independently, by
integrating a set of SLL optimizations into an existing SLP
compiler [200]. The remainder of this section motivates the
SLL optimizations.

Achieving locality in superword registers differs from lo-
cality optimization for scalar registers. To exploit temporal
reuse of data in scalar registers, compilers use scalar re-
placement to replace array references by accesses to tempo-
rary scalar variables, so that a separate backend register al-
locator will exploit reuse in registers [5]. In addition, unroll-
and-jam is used to shorten the distances between reuse of
the same array location by unrolling outer loops that carry
reuse and fusing the resulting inner loops together [5]. In
conventional architectures with scalar register files, spatial
locality can only be obtained in caches.

In contrast, a compiler can optimize for superword-level
locality in superword registers locality through a combina-
tion of unroll-and-jam and superword replacement. These
techniques not only exploit temporal reuse of data, but
also spatial reuse of nearby elements in the same super-
word. In fact, even partial reuse of superwords can be
exploited by merging the contents of two registers con-
taining superwords that are consecutive in memory (see
Section 4.3). Thus, as is common in multimedia applica-
tions [25], streaming computations with little or no tem-
poral reuse can still benefit from spatial locality at the
superword-register level, as well as at the cache level.

While cache optimizations are beyond the scope of this
paper, we observe that the SLL optimizations presented
here can be applied to code that has been optimized for
caches using well-known optimizations such as unimodu-
lar transformations, loop tiling and data prefetching. When
combining loop tiling for caches, superword-level paral-
lelism and superword-level locality optimizations, the tile
sizes should be large enough for superword-level paral-
lelism, and for unroll-and-jam and superword replacement
to be profitable.

These points are illustrated by way of a code example,
with the original code shown in Figure 1{a). This example
shows three optimization paths. Figure 1(b) optimizes the
code to achieve superword-level parallelism. Here, sws, an
abbreviation for superword size, is the number of data ele-



forii=); i<n; i++)
for (=0 j<n; j++)
ali][j] = ali- 1]{j] * b[i] + bli+1];

(@) Original loop nest.

for(i=; i<n; i++)
for ()= j<n; j+=sws)
alil[jij+sws- 1] = a[i-1][;:j+sws-1] * b[i] + bli+1]:

(b After superword-level parallelismij loop).

for(i=0; i<n; i+=2)
for (=0; j<n; j++) |
ali][j] = ali- 1][j] * B[i] + bli+1]:
ali+1][j] = afi]lj] * bli+1] + bli+2];

() Unroll-and-jam on the example in @i loop).

tmpl =h[0];
forii=l; i<n; i+=2) |
tmp2 = hli+1]:
lmp3 = bli+2];
for (=0 jn; 4+
tmp4 = ali-1][j] * tmpl + tmp2;
ali+1][j] = tmp4 * tmp2 + tmp3;
ali][j] = tmp:
1

I

tmpl = 1mp3;
|
I

(d) After scalar replacement on the code in (c).
forii=, i< i+=2)

for (j=0; j<n; j+= sws) |
ali][j:j+sws- 1] =a[i-1][}:j+sws-1] * b[i] + bli+1]:

ali+1[jj+sws-1] = a[i][jj+sws-1] # bli+1] + b[i+2];

(&) Unroll-and-jam on the example in ()i loop).

tmpl [(esws- 1] = b[(esws-1];
stmpl = tmpl [0];
stmp2 = tmpl[1];
feld = 2;
for(i=l; i<n; i+=2) |
ST held” denotes an index into “tmpl” for stmp3
ififield == 0
tmpl[(sws-1] = b[i+2:i+sws+1];
simp3 = tmpl[Geld];
for (j=0; j<n; j+= sws) |

tmp2[0esws-1] = ali- 1][j:}+sws-1] # stmpl + stmp2:
ali+1[j:j+sws-1] = tmp2[(sws-1] * stmp2 + stmp3;
ali][jj+sws- 1] = tmp2[0:sws-1];

stmpl =stmp3;
simp2 = tmpl [Geld+1];
field = (feld+2)5sws;

() After superword replacement on code in (&)

Figure 1. Example code.
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ments that fit within a superword. For example, if @ and b
are 32-bit float variables, on a machine with 128-bit super-
words, sws = 4. In Figures 1(c) and (d), we show how the
original program can instead be optimized to exploit reuse
in scalar registers, using unroll-and-jam and scalar replace-
ment, respectively. In Figures l(e) and (f), we combine
these ideas, using unroll-and-jam and superword replace-
ment, respectively, to transform the code in (b) for both
superword-level parallelism and superword-level locality.

Table 1 shows how the three different optimization paths
affect the number of array accesses to memory in the final
code. The original code has n? reads and writes to array
and 2n2 reads to array h. Exploiting superword-level par-
allelism in loop j. as in Figure 1(b) reduces the number of
reads and writes to array a by a factor of sws since each
load or store operates on sws contiguous data items: for
array b, there is no change since the array is indexed by
rather than j. If instead the code was optimized for scalar
register reuse, as in Figure 1(d), we can reduce the num-
ber of array reads of @ down by a factor of 2, and reads
of b by a factor of n. with the number of writes remaining
the same. By combining superword-level parallelism and
superword-level locality as in Figure 1(f), we see that the
number of reads and writes is further reduced by a factor
of sws. Figure 1(f) illustrates some of the challenges in
exploiting reuse in superwords. Analysis must identify not
just temporal, but also spatial reuse, and for both individ-
ual statements and groups of references. The compiler also
must generate the appropriate code to exploit this reuse; for
example, we select scalar fields of b from the superword,
since we are not parallelizing the ¢ loop.

The remainder of this paper describes how the com-
piler automatically generates code such as is shown in Fig-
ure 1(f), and the performance improvements that can be ob-
tained with this approach.

3 Superword-Level Locality Algorithm

The superword-level locality algorithm has four main
steps, as summarized in the next subsection. At the heart
of the algorithm is an approach for counting both memory
accesses and register requirements for storing reused data,
which is the subject of the subsequent subsection.

3.1 Steps of Algorithm

Step 1: Identifying Reuse.  First, we identify array vari-
ables and loops carrying temporal or spatial reuse. We ex-
amine the dependence graph, looking for references that
have loop-carried consistent dependences (i.e., constant de-
pendence distances) or are loop invariant with one of the
loops, and so have opportunities for data reuse that can be
exposed by unroll-and-jam.

Applying unroll-and-jam to a loop with a loop-variant
reference creates loop-independent dependences in the un-



rolled loop body. In the example in Figure 1(a), there is a
true dependence between references A[i][j] and A[i — 1][j]
with distance vector (1,0). After unroll-and-jam, a loop-
independent dependence is created between A[¢][j] in the
first statement and A[i][j] in the second statement, cre-
ating a reuse opportunity. Similarly, spatial and group-
temporal reuse can be exposed by unroll-and-jam when a
reference has a loop-carried dependence with the loop that
traverses the lowest array dimension. For loop-invariant ref-
erences, unroll-and-jam generates loop-independent depen-
dences between the copies of the reference in the unrolled
loop body.

Step 2: Determining unroll factors for candidate loops.
The algorithm next determines the unroll factors for each
candidate loop that carries reuse and for which unroll-and-
jam is legal, with the following goal.

Optimization  Goal: Find wunroll factors
‘X1, X5, X for loops 1 to n ina n-deep loop
nest such that the number of memory accesses
is minimized, subject to the constraint that the
number of superword registers required does not
exceed what is available.

The search algorithm uses the reuse information and the
number of registers available to prune the search space, as
follows. Loops that carry no reuse are not included in the
search. Next, we observe that for each unrolled loop [, the
amount of reuse of an array reference with reuse carried by
I increases with the unroll factor X;. Therefore reuse is a
monotonic, non-decreasing function of the unroll factor for
each loop, given that the unroll factor of all other loops are
fixed. The algorithm uses this property to prune the search
space, avoiding searching for all possible unroll factors for
a given loop. It traverses the search space by varying the
unroll factor of one loop while keeping the unroll factor of
all other loops fixed. A binary search within a dimension
can further prune the search. Also, the unroll factor of each
loop, given that all other unroll factors are fixed, is limited
by the number of registers available. Once the search finds
an unroll factor for a given loop that exceeds the register
limit, it prunes all larger unroll factors for that loop from
the search space.

To guide the search towards the above optimization goal.
we calculate the superword footprint, which represents the
number of superwords accessed by the unrolled iterations
of the loop nest, as a function of the unroll factor. The su-
perword footprint can be used both to count how many reg-
isters are required to hold the accessed data, as well as how
many memory accesses remain in the loop nest. Assuming
that all variables are kept in registers when the superword
footprint fits in the superword register file, the number of
memory accesses associated with a set of references is sim-
ply the superword footprint for the references multiplied by
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the bounds of the loops in which they are nested after un-
rolling. Our method for selecting unroll factors based on re-
quired superword registers differs from related approaches
oriented towards scalar registers [5], accounting for not only
temporal but also spatial and group reuse. In the next sub-
section, we describe in detail the calculation of the super-
word footprint.

Step 3: Unroll-and-Jam and Superword Replacement.
Once the unroll factors are decided, the loop nest is trans-
formed and array references are replaced with accesses to
superword temporaries, as discussed in Section 4.

3.2  Computing the Superword Footprint

The algorithm for computing the superword footprint for
a loop nest first partitions the references in the loop into
groups of uniformly generated references [30], that is, ref-
erences to the same array such that, for each array dimen-
sion, the array subscripts differ only by a constant term'.
Then, for each group of references, it computes the regis-
ters needed to keep the data accessed in the unrolled loop
body. Finally, the total number of registers is computed as
the sum of those of each group of uniformly generated ref-
erences. We first discuss how to compute the registers re-
quired for a single reference as a function of the unroll fac-
tors of each unrolled loop. Then we discuss how to compute
the register requirements for a group of uniformly generated
references. The registers required for such a group may be
smaller than the sum of the registers required for each ref-
erence, if computed individually, since the same superword
may be accessed by two or more copies of the original ref-
erences when the loops are unrolled.

Our method determines the number of superword reg-
isters required to hold the data accessed by the loop refer-
ences in the unrolled loops. However, extra registers may be
needed to, for example, align a superword operand which
is already kept in superword registers. That is, the com-
putation may require more registers than those needed for
storing the data. Therefore, we reserve some scratch regis-
ters for manipulating data and compute the number of regis-
ters needed just for storing the data accessed in the unrolled
loops.

To simplify the presentation, we assume a loop nest of
depth n where all array references have array subscripts
that are affine functions of a single index variable (SIV sub-
scripts)’. We also assume that each p-dimensional array ref-
erenced by the loop is defined as A[s)|[sz]...[sp]. where
sq is the size of dimension d, 1 p. Dimension
p 1s the lowest dimension of the array, ie., the dimension

d

"W assume thal two or more references that access the same array but
are not uniformly generated access distinet data in memory, which results
in o conservative estimate of the number of registers,

*0ur current implementation can handle affine STV subscripts and cer-
tain affine MIV subscripts.
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Figure 2. Superword footprint of a single ref-
erence.

in which consecutive elements are in consecutive memory
locations. A reference v to array A is then of the form,
Alay # Iy 4+ by]az # Iz + be] . Jag # 1, 4+ by]. Similarly,
the array subscripts of the uniformly generated references
1, U3, w. Uy in dimension d are ag « {g + by, oag + g + ba,
wees itg # g + by, respectively. Thus, a reference with SIV
subscripts has each array dimension associated with just a
single loop index variable in the nest. We also assume that
the arrays are aligned to a superword in memory and that
the loops are normalized.

3.2.1 Superword Footprint of a Single Reference

For each reference v with array subscripts a+l-+b, where d
is the array dimension and [ is the loop variable appearing
in subscript «. the number of registers required to keep the
data referenced by v when {4 is unrolled by X, is given by
the superword footprint of vin iy, or Fy,(v). The superword
footprint consists of the superwords accessed by all copies
of v resulting from unrolling.

When dimension d is the lowest array dimension (d =
1), the superword footprint is given by Equation { 1). Equa-
tion (la) corresponds to the footprint of a loop-invariant
reference. Equation (1b) corresponds to the footprint of a

reference with self-spatial reuse within a superword, as il-
lustrated in Figure 2(a), and (lc) holds when the reference
has no spatial reuse.

1 (a) ifng =10
P Xy & e
11:'-:!,,I,.".l = —Lf:ﬁi-‘ (by ifayg < sws (1
-Yl'.f fc) ifag = sws

When o is one of the higher dimensions, 1 d = p,
and loop {4 is unrolled, the offset between the footprints of
each copy of v is g =+ ]'[‘;:Prl s, where s; is the size of
the " array dimension, as shown in Figure 2(b). Assum-
ing that the size of the lowest array dimension (s;) is larger
than sws, which is usually the case in practice for realistic
array dimensions, each copy of v in the unrolled loop body
corresponds to a separate footprint, as shown in Figure 2(b).
Therefore the size of the footprint of v in {4 is the sum of the
X, disjoint footprints, and is recursively defined by Equa-
tion (2), where F-',.-':'f'.:' is computed as in Equation (1).

Fll,fl:-'l":l = —-Yll,,' ‘Fh“ ||j'“j|
p—1
= (J] Xu) * Fi (v) (2)
i=d

For a single reference, the number of superword registers
given by Equation (1) and the number of scalar registers that
would be required if the same unroll factors were used differ
only when g < sws, that is, when spatial reuse can be
exploited in superword registers. For a group of uniformly
generated references the analysis must also consider group
reuse, as discussed next.

3.2.2  Superword Footprint of a Reference Group

The number of registers required to keep a group of uni-
formly generated references V7' = [uq, v3, ..., v | when
loop [ is unrolled by X, is the superword footprint of the
group, F;, (V7). The superword footprint of a group consists
of the union of the footprints of the individual references,
as some of the reference footprints may overlap. depend-
ing on the distance between the constant terms in the array
subscripts.

The footprints of two uniformly generated references
may overlap in dimension d only if they overlap in all di-
mensions higher than d. For example, the footprints of ref-
erences A[2{][j+2] and [2i+1][j] do not overlap in the high-
est (row) dimension, since the first reference accesses the
even-numbered rows of the array and the second accesses
the odd-numbered rows. Therefore the footprints cannot
overlap in the lowest {column) dimension. On the other
hand. the footprints of A[2i][j + 2] and A[2i + 4][j] overlap
in the row dimension for iterations 41, iz, 1 < d1.12 = X,
such that 277 = 2is + 4. For the iterations of ¢ in which
the footprints overlap in the row dimension, the footprints
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Figure 3. Superword footprint of a group of references.

may overlap in the column dimension if there exist itera-
tions ji, j2. 1 < j1.jz = Xj, such that j; + 2 = ja.

The superword footprint of a group V" in a set of un-
rolled loops is computed as follows. For each dimension
d, from highest to lowest dimension, the footprint is com-
puted assuming that the footprints of the references in the
group overlap in the higher dimensions. For each dimen-
sion ¢ < p, the algorithm partitions references into subsets
such that each subset corresponds to a disjoint footprint in
dimension d. Then, for each subset, the algorithm recur-
sively computes the footprint in dimension d + 1, as we
now describe.

Dimension d is the lowest dimension (d = p).  We first
compute the group footprint of two array references, and
then we extend it for m2 references. The group footprint of
two references |, |, with lowest dimension subscripts
tg # lg + by and ag + 14 + b such that by < be, when loop
[4 is unrolled by X, is given by Equation (3} in Figure 3.

Equations {3a). (3b) and (3c) correspond to combi-
nations of two basic conditions which determine the super-
word footprint of a pair of uniformly generated references.
The first condition is whether the references have self-
spatial reuse within a superword, that is, whetherag < sws.
The second is whether the footprints may overlap, which is
the case when (by — by) < ag+ X,

Figure 3 shows four examples of superword footprints
corresponding to Equation (3). Figure 3(a) corresponds to
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Equation (3a), where the footprints may overlap and the
group footprint is the union of the two footprints. Each of
the individual footprints is a set of X, superwords since the
references have no spatial reuse. The footprints overlap if
(by — by} is evenly divided by a, and there exists an integer
value k. 1 < k< X . suchthat k = 14 by — by )/ay. This
equation precisely computes the overlapped footprint when
the two footprints have group temporal reuse. For group
spatial reuse, we conservatively approximate the footprint
with Equation (3¢). In Figure 3(b) the footprints of v, and
vz overlap, and both references have spatial reuse within
a superword. The corresponding footprint size is given by
Equation (3b).

Figures 3(c) and 3{d) correspond to Equation (3c), where
the footprints do not overlap and therefore the group foot-
print is the sum of the individual footprints. In Figure 3(c)
v1 has no self-spatial reuse and each copy of vy in the
unrolled loop body accesses a distinet superword, and the
same is true for vs. In Figure 3(d) both v and v have su-
perword spatial reuse.

The number of registers required for reference group
Vo= |, 2, ..., 0| is computed by extending the equa-
tions above to more than two references. Here we describe
the most interesting case (corresponding to Equation (3b)),
where the footprints overlap and the references have spa-
tial reuse. A subset group Vi = { i Pipn g oo Vinas |
is defined by lowest dimension subscripts a, = I + by,



i imar. Where the references have been sorted
so that bj_y < b;. V; has a footprint consisting of contigu-
ous superwords if there is self-spatial reuse (a,
and possible overlap (b; — b1 ity + Xy,) for all j
such that i < Jj tmar- 10 compute the number of
registers required for the entire group, the algorithm par-
titions 1" into disjoint subsets V; as defined above, where
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Each subset V; corresponds to a footprint of contiguous
superwords consisting of the union of the individual foot-
prints, with size given by Equation (5).
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The total number of superword registers required for the
references in V' is then the sum of the disjoint footprints of
the sets ;. asin (0).
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Dimension d is not the lowest dimension {(d = p).  When
¢ is one of the higher dimensions, the superword footprint
of V"' = {v. vz, ...ty | in loop {4 is again the union of the
individual footprints.

From Section 3.2.1, the footprint of each reference v in
the unrolled loop body consists of a set of X, disjoint foot-
prints, where each of the X, footprints starts at superword
(ag#la+b;) = H:’:”.H s;. where s; is the size of dimension
ioand 1 < Ig = Xy,

Therefore the footprints of different references in the
group may overlap for some superwords, depending on the
values of a4, b; and the unroll factor X ;. The footprints
of two uniformly generated references 1 and v overlap
in dimension d if there exists an integer value % such that
1 < k< X, that satisfies Condition 7.

g+ k4 b = ag + ba. (7
Furthermore, if there exists & satisfying the above condition,
the footprints corresponding to the & to X, copies of v in
the unrolled loop body overlap with those corresponding to
the first Xy, — & + 1 copies of v2. The footprint of vy, v2]
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is then given by Equation (8).

Figlvnvz) = (I — 1)+ Fi, ()
+ (X b+ 1) Fyy, (v, vs)
+ (I — 1)+ Fyy, (v2) (8)

To compute the size of the entire footprint of V' in {4, our
algorithm partitions V" into subsets V; = {u;,...
such that, for any j. imin < J < ¥ymae. the pair {v;_1, vy
satisfies Condition (4). The footprint of 1; is the union of
the overlapped footprints of its reference set and is com-
puted by extending Equation (8) to more than two refer-
ences.

b 1
ooy Vignag |

4  Optimizations for Superword Replacement
After the appropriate unrell factors are determined by the
algorithm in the previous section, the unrolled code is then
optimized for superword-level parallelism. Not until after
SLP are the final code transformations performed to actu-
ally exploit reuse in superword registers. In this section, we
briefly describe these transformations.

4.1 Replacing Redundant Loads and Stores

Our compiler replaces redundant loads and stores
from/to memory with accesses to superword temporaries.
Since the code is already unrolled, it is very straightforward
to recognize these opportunities. The compiler simply de-
termines that addresses and offsets for different memory ac-
cesses fit within the same superword, and verifies that there
are no intervening kills to the memory locations.

4.2  Packing in Superword Registers

As part of SLP’s code generation, whenever data is
packed to form superwords, this is done through memory.
A data element is loaded into a scalar register from the
source location and stored to the destination location. Pack-
ing through memory is in some sense motivated by the fact
that many multimedia extension architectures do not sup-
port register-to-register transters between scalar and super-
word register files.

In our system, we have developed an optimization we
call register packing, shown in Figure 4, to perform this
packing in the superword register file. We take advantage
of two instructions that are common in multimedia exten-
sion architectures, which we call replicate and shifi-and-
load. Replicate replicates one element of a source register
to all elements of a destination register. Shift-and-loadtakes
two source registers. The first source register is shifted left
by the amount of the third argument and the same amount
is taken from the second source register to fill the destina-
tion register. Packing these operands in superword registers
eliminates numerous scalar loads and stores.



w = ={{foal *1&a + 0} lempl = replicate(a, 05

= F{(Moal #)8&b + 0); lemp2 = replicate(b, 0;

y = #{(Hoal *)8&c + 0); temp3 = replicate(c, 0

=% (Moal #)dd + 0, lempd = replicate(d. 0

F(Moat *wep + 0) = w: p = shift_and_loaditempl, templ, 43;
Fifloal *)dp + 1) =x: p = shift.and_loadip, temp2, 4):
F((Hoal *wep +2) =y, p= shilloand_Jdoad(p, temp3, 4);
F((Hoal *wep +3) =2 p = shilloand_Jdoad(p, tempd, 4);

(a) Packing through memory (b Packing in registers

Figure 4. Register Packing

4.3  Shifting for Partial Reuse

Spatial reuse within a superword happens when distinct
loop iterations access different data in the same superword.
Partial spatial rewse of superwords occurs when distinct
loop iterations access data in consecutive superwords in
memory, partially reusing the data in one or both super-
words, as shown by the example in Figure 5, and illustrated
graphically in Figure 5(d). In this example, as before as-
suming that swws = 4, array reference b[¢ + j] has partial
spatial reuse in loop ¢. For a fixed value of ¢ and j, the data
accessed in iteration (1, j) consists of the last three words
of the superword accessed in iteration (¢ — 1, j), plus the
first word of the next superword in memory. This type of
reuse can be exploited by shifting the first word out of the
superword, and shifting in the next word, as in Figure 5.
As shown in Figure 5(c), only two superwords need to be
loaded for the data accessed in the 4 copies of b[i 4 j] in the
loop body. after shifting is applied. Before shifting. b[i + j]
had to be loaded from memory (and aligned, for architec-
tures that support only aligned accesses) for each of the four
copies of b1 + j] in the loop body.

Detecting the applicability of superword shifting is
straightforward, involving checking the dependence dis-
tance on the loop for small, constant distances. Code gener-
ation is also straightforward, since multimedia extension ar-
chitectures support efficient shifting and permutation mech-
anisms for aligning and rearranging data in superwords.

5 Experimental Results

This section presents an experiment that demonstrates
the dramatic performance improvements that can be derived
from compiler-controlled caching in superword registers.
We describe an implementation that incorporates superword
register locality optimizations into an existing compiler ex-
ploiting superword-level parallelism [20]. We present a set
of results on four multimedia kernels and two scientific ap-
plications, derived automatically from our implementation.

5.1 Implementation and Methodology

Figure 6 illustrates the system we have developed for this
experiment, which uses the Stanford SUIF compiler as its
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for i =i < ni++)
for (=100 < n;j++)
afi](jI= bli+j] * e[l

(a) Original loop nest

forgi=ii<mit=4)
for (=0 ] < n; j += 4y
ali][jij+3] = bli+jri+j+3] # c[jj+3];
ali+1][+3] = bli+j+Li+j+d] = c[j:j+3]
ali+2] 3] = bli+j+2i++5] * cfji+3l
ali+3][1j+3] = hli+j+3i+j+a] * c[jj+3]:

(b After unroll-and-jam and SLE, assuming sws = 4.

forgi=ii<mit=4)
for (=100 << n; j 4= 4)4

tmpl[0:3] = bli+j:i+{+3]:
tmp2[0:3] = bli+j+di+j+7]:
ali]lji3] = tmpl [0:3] * e[ )5+3];
shift_and_load (mpl{0:3], tmp2[(:3], 1)
ali+1][+3] = tmpl[0:3] # c[jij+3]:
shiftandload (mpl[0:3], mp2[0:3], 1)
ali+2][1+3] = tmpl[0:3] # c[jij+3]:
shiftand_load (mpl[0:3], mp2[0:3], 1)
ali+3][J+3] = tmpl[0:3] # c[jj+3];

() After shifling across superword registers.

1 R2
toad [olalalaledsTel sl Dalelofulu]ululis]
SGTHT;”I ! 3| 5| J| 5| 617 1% ] shift in
Smnlz 3 II |.< |-:’- IT |:i |0 Shift in

snintont] s[4 ]5[e] 7] 5] o|w

(d) Graphical depiction of shifting.

Figure 5. Shifting registers for partial reuse.
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Table 2. Benchmark programs.

underlying infrastructure [18]. The input to the system is a
C program, which is then optimized by passes in SUIF, in-
cluding our Superword Locality analysis described in Sec-
tion 3, followed by the Superword-Level Parallelism (SLF)
optimization passes by Larsen and Amarasinghe[20], and
finally, an optimization pass that performs superword re-
placement as described in Section 4 to steer the compiler to
obtain the reuse in superword registers that the SLL algo-
rithm determined was possible.

The output from the SUIF portion of the system is an op-
timized C program, augmented with special superword data
types and operations. Currently, the resulting code is passed
to a Gnu C backend, modified to support superword data
types and operations for the PowerPC AltiVec instruction-
set architecture extensions. Each superword operation cor-
responds, in most cases, to a single instruction in the Al-
tivec ISA. The role of the GCC backend includes replacing
the vector operations with the corresponding AltiVec super-
word instruction, and allocating the vector data types to the
superword registers. The resulting code is executed on a
533 MHz Macintosh PowerPC G4, which has a superword
register file consisting of 32 128-bit registers.

5.2  Performance Measurements

We have applied the previously-described implementa-
tion to four of the five multimedia kernels and the two sci-
entific programs from the Specfp95 benchmark suite for
which execution time speedups were reported in Larsen
and Amarasinghe, summarized in Table 2 [20]. As a first
step, we verified that we could reproduce their previously
reported results. For purposes of comparison, we initially
followed the same methodology established in Larsen and
Amarasinghe [20]: (1) we used the same programs: (2) all
versions of the code were compiled on the AltiVec without
optimization; and, (3) baseline measurements were derived
by compiling the unparallelized code for the PowerPC G4.
We are using an updated implementation of SLP from what
was published, as well as a faster target machine and new
releases of GCC and the Linux operating system, so there
are some differences in results, but they are very minor.

Larsen and Amarasinghe were unable to use optimiza-
tion on the AltiVec-extended GCC backend at the time
of their study, but in the intervening time, this Motorola-
supplied backend has become more robust. For the results
presented in this section, we modify the methodology to
perform “-03" optimizations. To understand the overall
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Figure 7. Reduction in dynamic memory
accesses due to superword replacement.

benefits of exploiting compiler-controlled caching in super-
word registers. we have compared the results of the full sys-
tem with those obtained when SLP is used alone. For this
reason, we report results where SLP is applied to the origi-
nal codes and compare these results to the full system.

We show two sets of results. First, in Figure 7(a), we
show the percentage of vector loads and stores eliminated
by the full system. as compared with SLP alone. Our ap-
proach eliminates over 50% of the vector loads and stores
in three of the four kernels, and over 85% in SWIM and
TOMCATV. We also eliminate scalar loads and stores using
register packing, as described in Section 4. In Figure 7(b),
we see that our approach eliminates over 90% of the scalar
loads and stores in the four kernels, and over 35% in SWIM
and TOMCATY.

Figure 8 shows how these reductions in instructions
translates into speedups over SLP. To isolate the benefits of
individual components of our system, we measure the per
formance of the code at several stages of the optimization
process. The first bar, normalized to 1, shows the results
of SLP alone. The second bar. called Unrolled+SLP, shows
the results of running the first portion of the SLL algorithm,
described in Section 3. which performs unroll-and-jam on
the loop nest to expose opportunities for superword reuse,
and following up with SLP. This bar isolates the impact of
unrolling, since it is not until after SLP that this reuse is
actually exploited. Also, because it is reordering the it-
eration space to bring reuse closer together, this version
will also obtain locality benefits in the data cache. Thus,
this bar provides the cache locality benefits of unroll-and-
jam, which can be compared against the additional improve-
ments from superword register locality. The third bar, Su-
perword Replacement, provides speedup using Superword
Replacement and Shifting, as described in Section 4. The
final bar, entitled Register Packing, shows the additional
improvement due to this technique, also described in Sec-
tion 4.

Overall, we see that in combination, applications achieve
speedups between 1.3 and 2.8 over SLP alone, with an av-
erage of 2.2X. Consideration of TOMCATV and SWIM
shows that both programs have little temporal reuse, al-
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Figure 8. Speedups over SLP alone.

though there is a small amount of spatial reuse that is ex-
ploited with our approach, particularly in TOMCATV. We
are obtaining a locality benefit due to unroll-and-jam. We
also observe additional SLP due to iteration-space splitting,
motivated by the need to create a steady-state loop where
the data is aligned to a superword boundary. The four other
programs show a significant improvement from superword
replacement. For VMM, MMM and FIR, there are also
huge gains due to register packing.

In summary, the SLL techniques presented in this paper
dramatically reduce the number of memory accesses and
yield significant performance improvements across these 6
programs. Thus, this paper has demonstrated the value of
exploiting locality in superword registers in architectures
that support superword-level parallelism such as the Al-
tivVec.

6 Related Research

For well over a decade, a significant body of research
has been devoted to code transformations to improve cache
locality, most of it targeting loop nests with regular data
access patterns [13, 6, 31, 32]. Loop optimizations for
improving data locality, such as tiling, interchanging and
skewing, focus on reducing cache capacity misses. Of par-
ticular relevance to this paper are approaches to tiling for
cache to exploit temporal and spatial reuse; the bulk of this
work examines how to select tile sizes that eliminate both
capacity misses and conflict misses, tuned to the problem
and cache sizes [7.9, 12, 14, 15, 16,19, 28, 30, 26]. The key
difference between our work and that of tiling for caches is
that interference is not an issue in registers. Therefore, mod-
els that consider conflict misses are not appropriate. Fur-
ther, our code generation strategy must explicitly manage
reuse in registers.

There has been much less attention paid to tiling and
other code transformations to exploit reuse in registers,
where conflict misses do not occur, but registers must be
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explicitly named and managed. A few approaches examine
mapping array variables to scalar registers [30, 5, 23]. Most
closely related to ours is the work by Carr and Kennedy,
which uses scalar replacement and unroll-and-jam to ex-
ploit scalar register reuse [4]. Like our approach, in deriving
the unroll factors, they use a model to count the number of
registers required for a potential unrolling to avoid register
pressure, and they replace array accesses, which would re-
sult in memory accesses, with accesses to temporaries that
will be put in registers by the backend compiler. Their
search for an unroll factor is constrained by register pres-
sure and another metric called bafunce that matches mem-
ory access time to floating point computation time. OCur
approach is distinguished from all these others in that the
model for register requirements must take spatial locality
into account, we replace array accesses with superwords
rather than scalars, and we also consider the optimizations
in light of superword parallelism.

There are several recent compilation systems developed
for superword-level parallelism [20, 27, 8, 10, 1]. Most, in-
cluding also commercial compilers [29, 24], are based on
vectorization technology [27, 10]. In contrast, Larsen and

Amarasinghe devised a superword-level parallelization sys-

tem for multimedia extensions [20]. They point out that
there are many differences between the multimedia exten-
sion architectures and vector architectures, such as short
vectors, ease of mixing with scalar instructions, and need
for alignment of memory accesses [21]. They argue that
their algorithm for finding superword-level parallelism from
a basic block instead of a loop nest is much more effec-
tive than using vectorization-based techniques. None of the
above approaches exploit reuse in the superword register
file.

7  Conclusion

This paper presents an algorithm for compiler-controlled
caching in superword register files. The algorithm is appli-
cable to multimedia extensions such as Intel’'s SSE., Pow-
erPC’s AltiVec, and also to Processor-in-memory (PIM) ar-
chitectures with support for superword operations.

We implemented our approach in an existing compiler
targeting superword-level parallelism. We presented exper-
imental results, derived automatically, comparing the per-
formance of six benchmarks/multimedia kernels optimized
tor parallelism only, using SLP, and optimized for both par-
allelism and locality. Our results show speedups ranging
from 1.3 to 2.8X, and an average of 2.2X, on the 6 pro-
grams as compared to using SLP alone, and most memory
accesses are removed.

The approach taken here that separates optimizations
for SLLL and SLP is convenient for implementation pur-
poses, since we are building upon the work of others. Fur-
ther, as there are now a few other compilers that exploit



superword-level parallelism [27, 8, 10, 1], the same can
be used to extend these existing systems to incorporate
compiler-controlled caching in superword registers. Ideally,
however, an optimizer that integrates the superword paral-
lelism and locality techniques could be even more effective.
For example, in a combined algorithm, selection of which
loops to parallelize could also take superword-level locality
into account. A combined algorithm is the subject of future
work.
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ABSTRACT

This paper presents a compiler algorithm and several opti-
mization techniques to exploit a DRAM memory characteris-
tic(page mode) automatically. A page-mode memory access
exploits a form of spatial locality, where the data item is
in the same row of the memory buffer as the previous ac-
cess. Thus, access time is reduced because the cost of row
selection is eliminated. The algorithm increases frequency of
page-mode accesses by reordering data accesses, grouping to-
gether accesses to the same memory row. We implemented
this algorithm and present speedup results for four multi-
media kernels ranging from 1.25 to 2.19 for a Processing-In-

Memory (PIM) embedded DRAM device.

1. INTRODUCTION

Memory delays are a major performance bottleneck in
embedded-DRAM systems, where the memory latencies seen
by the processor are dominated by the on-chip-DRAM access
time. DRAM modules support an efficient page-mode access,
where a memory access to a location currently in the DRAM
open-row buffer fetches the data directly from that buffer,
eliminating the cost of fetching the row from the DRAM
array. Page-mode accesses, when applicable, are supported
by the DRAM's memory controller. To fully exploit lower
latency page-mode accesses, the user or the compiler must
reorganize the computation so that accesses to a same mem-
ory row are grouped together, and there are no intervening
accesses to other rows,

In the past decade, most of the research on compiler opti-
mizations for the memory hierarchy focused on exploiting
data locality in caches [4, 7, 8, 9, 10, 15, 24, 35, Al
though cache optimizations and page-mode optimizations
have the common goal of exploiting data reuse (in caches
or in the DRAM’s open row, respectively ). the analysis and
code transformations required are different. For example,
loop tiling is used to exploit temporal reuse in caches by
bringing together in time loop iterations that access the same
data. The goal is to keep the data accessed in a tile in cache,
and the order of the accesses within a tile is not important.
Un the other hand, exploiting page-mode accesses requires
not only bringing together in time loop iterations that access
data in a same memory row, but also grouping these data
accesses together. Expeosing opportunities for grouping ac-
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cesses to a same array may require transformations such as
unroll-and-jam, to bring accesses issued in distinct loop it-
erations to the body of the transformed loop, and statement
reordering, to group the memory accesses.

Recent research has proposed to exploit page-mode accesses
through manual code transformations [19, 17, 3]. This paper
presents a compiler algorithm for ex ploiting page-mode auto-
matically. Our algorithm is implemented in the SUIF com-
piler infrastructure [13], and it leverages well-known com-
piler analyses and code transformations to identify poten-
tial page-mode accesses and group these memory accesses
together. The algorithm is applicable to loop-based compu-
tations in general embedded systems and it is also applicable
to embedded-DRAM systems designed to exploit the large
on-chip bandwidths by transferring and processing objects
larger than a machine word [23, 1].

We have performed an experimental evaluation of our al-
gorithm on a Processing-In-Memory (PIM) device that is
part of the DIVA architecture [12], where the PIM pro-
cessor is capable of transferring and processing 256-bit ob-
jects (superwords) in parallel. Our results show the perfor-
mance improvements from exploiting page-mode accesses,
and the combined benefits of page-mode accesses and other
compiler optimizations targeting architectures with support
for superword-level parallelism' (SLP) [16, 22]. We obtain
speedups ranging for 1.25 to 2.19 for four multimedia ker-
nels. This paper makes the following contributions:

¢ A new compiler algorithm for automatically exploiting
page-mode memory accesses;

o An experimental evaluation of the algorithm on four
data-intensive multimedia kernels;

o A discussion of practical issues that must be addressed
when exploiting page-mode accesses in combination
with other compiler optimizations.

This paper is organized as follows. Section 2 motivates our
approach using a simple example. Section 3 introduces our
algorithm for exploiting page-mode memory accesses. Sec-
tion 4 presents experimental results on a set of four multi-
media kernels. Section 5 addresses practical issues which are
the subject of future work. Helated research is discussed in
Section 6 and Section 7 concludes the paper.

2. MOTIVATION
Figure 1 illustrates the benefits of page-mode accesses using
a simple loop nest with two array references. Assuming that

'Fine grain SIMD parallelism in a register larger than a
machine word
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Table 1: Memory Latency Computation

the sizes of arrays A and B are larger than the DRAM's
open-row buffer, all array references in Figure 1{a) are in
random-mode, since reference BJi] displaces the DRAM row
containing A[f][i] from the open-row buffer and vice-versa.

For the same number of memory accesses in this loop nest,
we can increase the page mode memory accesses by applying
a series of code transformations, as shown in Figure 1(b).
First, unroll-and-jam is used to unroll the outer i loop and
fuse together the resulting inner j loop bodies. Unroll-and-
jam creates opportunities for page-mode accesses by moving
array references from successive loop iterations of the outer
loop into the body of the transformed inner loop. Once the
loop is unrolled and the copies of the loop body are fused,
accesses to the same memory page in the loop body may
be grouped together by reordering the memory accesses in
the transformed loop body, if the recrdering does not violate

data dependences.

In Figure 1(k), following unroll-and-jam, where the i loop is
unrolled by a factor of 4, references to the same array (A or
B in the body of the transformed loop are grouped together.
This results in page-mode accesses for all references in the
loop body, except leading references A[jf][i] and B[], which
are in random mode.

Table 1 shows the total memory access cost for the code in
Figures 1 {a) and (b)), if we assume that latencies for random
mode and page mode accesses are uniform, and that accesses
are not going through cache. Assuming that random-mode
latency is three times the page-mode latency as in [14], loop
{a) has a total latency ccst of 6+ n +m + PM Latency, while
{b) has a cost of 3+n+sm+PM Latency, a factor of 2 difference
in overall memory latency.

This example shows the potential for improving performance
in embedded DRAM devices through the previously-described
code transformations. To expose opportunities for page-
mode accesses by applying unroll-and-jam and memory ac-
cess reordering, a compiler algorithm must: (1) determine
the safety of these code transformations and select a loop
for which unrolling is profitable; (2) select an unrall factor
that increases page-mode accesses while not causing register
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for{i=0ji<n;i++)1
for (j=0j<mij++)1{
load A [ji]
load BIj

1

{a) Original

for{i=0:i<mi+=4)]
for(j=0j<mij-++)!

load AJj][i]

load Aj][i+1]
load Afj][i+2]
load Aj[i+3]
load BJi]

load Bli+1]
load Bli+2]
load Bli+3]

1

(b} After unroll-and-jam and reordering

Figure 1: Unroll-and-jam and Reordering

spilling: and, (3} transform the code to recrder the memory
accesses. In the next section we present our compiler algo-
rithm for exploiting page-mode accesses, which includes the
three steps above.

We have developed this algorithm in the context of a com-
piler for DIVA. a system-architecture that incorporates
processing-in-memcory embedded DRAM devices as smart-
memory co-processors in an otherwise conventional system [12].
Although the proposed compiler algorithm is not specific
to the requirements of the DIVA architecture, we describe
the algorithm from the viewpoint of an architecture that
supports superwerd-level parallelism, with an instruction set
akin to multimedia extensions such as Intel's SSE and Mo-
torala’s AltiVec. Superword-level parallelism refers to per-
forming the same operation in parallel on multiple fields of
a superword, which is an aggregate object larger than a ma-
chine word. In the following algorithm description, we will
refer to register width to support the notion that a machine
might have different register widths for distinct objects. If a
machine does not support superword-level operations, then
the register width is the same as the machine word.

In previous work, we presented an algorithm for exploit-
ing spatial and temporal locality in superword register files
in a compiler that already supports superword-level paral-
lelism [22]. In this paper, we show that with a similar ap-
proach we can also exploit spatial locality in the page of a
DRAM memory array.

3. ALGORITHM

In this section we introduce a compiler algorithm for exploit-
ing page-mode memory accesses. Our algorithm is applicable
to loop nests with array references in the loop body, where
the array subscript expressions are affine functions of the
loop index variables. Only array accesses are reordered by
the algorithm, since it is difficult to determine whether two
scalar accesses are on the same memory page. For presen-
tation purposes, we make some simplifying assumptions as
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Figure 2: Algorithm

follows.

1. Array objects are aligned at memory page boundaries.

2. The lowest dimension sizes of array objects are multi-
ples of a memory page size.

3. The compiler backend does not change the memory
access order generated by the algorithm.

Some of these assumptions can be remaoved by modifving the
compiler backend (1,3) or by padding array objects (2).

The algorithm presented in this paper unrolls a single loop
in a loop nest, since in practice unrclling more than one loop
could create register pressure and intruction cache misses. A
set of heuristics is used to select which loop to unroll and its
unroll amount. These heuristics result in a fast algorithm
that is effective for the benchmarks presented in Section 4.

However, unrolling multiple loops in a loop nest might ex-
pose more opportunities for page-mode accesses than when
unrolling a single loop. In previous work [22] we present an
algorithm for exploiting superword-level locality which uses
unroll-and-jam to expose data reuse, and unrolls multiple
loops in a nest. The computation of the unroll amounts re-
quires a complex analysis to determine the exact number of
superword registers needed to keep the data accessed in the
loop. This complexity is due to several factors such as group
reuse among copies of a reference created by unrclling (which
may reuse data in superword registers) and self-spatial reuse
of the original references.

A more complex algorithm for exploiting page-mode memory
accesses which would consider multiple loops for unrolling is
the subject of future work, and we plan to leverage our anal-
vsis and algorithm for selecting unroll amounts described
in [22].

Figure 2 illustrates the steps of the algorithm, which are de-
scribed in the remainder of this section. The first step selects
which loop to unroll, after determining the safety of the code
transformations (unroll-and-jam and statement recrdering).
The second steps selects an unroll factor that increases page-
mode accesses while not causing register spilling. The last
three steps apply the code transformations to the loop nest.

Selecting a Loop To Unroll  The first step of the al-
gorithm selects a loop to unroll, based on the number of
random-mode memory accesses of the loop nest after ap-
plyving unrcll-and-jam. The algorithm uses data dependence
information to determine the safety of unroll-and-jam and
to prevent selection of unroll amounts greater than the de-
pendence distance if inner loop dependence distances are
negative.
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For each loop { in the loop nest, the algorithm computes the
unroll amount X} and its corresponding number of random-
mode accesses Ry, such that Fy is the smallest number of
random-mode memory accesses if [ is selected to be unrolled
{assuming that references to a same memory page can be
grouped together). Then the algorithm compares the num-
ber of random-mode accesses of each loop in the nest and
selects the loop with the smallest Ry.

When computing the unroll amount X that minimizes Ry,
the algorithm considers only references that are loop-variant
with [ in the lowest dimension. For a reference that is loop-
variant with [ in the lowest dimension, unrclling { and jam-
ming the copies of I in the loop body creates opportunities
for page-mode accesses between the copies of the original ref-
erence. On the other hand, unrolling loop { does not change
the total number of random-mode accesses generated by ref-
erences that are loop-variant with [ in one of the higher di-
mensions. Loop-independent dependences can be removed
by locality optimizations such as scalar replacement [2] or
superword replacement [22].

For each loop | the smallest unroll amount that minimizes
Ry is computed as in Equation 1.

P
T Minaeall(a) + Clal))

(1)

where P is the memory page size, A is the set of array ref-
erences in the loop nest which are loop-variant with [ in
the lowest dimension, a is an array reference in A, Tia) is
the type size of a and C'{a,l) is the coefficient of the index
variable [ in the lowest-dimension subscript of a.

After computing the unroll amounts, the algorithm com-
putes the corresponding number of random-mode memory
accesses [y, with the goal of selecting the loop with smallest
R). For each loop I, the number of random-mode accesses 1y
is computed as the number of distinct pages in the memory-
page footprint of A, Fj(A, X)) (assuming that the algorithm
can group together references to a same page). In previ-
ous work [22], we present the computation of the superword
foatprint of a set of array references in a loop nest, which
consists of the number of distinct superwords accessed by the
references, a function of the unroll amounts. The memory-
page footprint can be computed in a similar way to that of
the superword footprint. First, the set of references is par-
titioned into groups of wniformly generated references [25],
that is, references to the same array such that, for each ar-
ray dimension, the array subscripts differ only by a constant
term®. Then, for each group of references, the algarithm
computes the number of pages accessed in the unrolled loop
body. Finally, the total number of pages is computed as the
sum of those of each group of uniformly generated references.

Controlling Register Pressure  After selecting a loop
[ to unroll, the algorithm adjusts the unroll amount of the
selected loop to avoid register pressure and register spilling,
which could offset the benefits of unroll-and-jam.

In a previous paper [22] we presented the computation of the
number of registers required to keep the data accessed by the
references in the loop nest after applying transformations
for inereasing locality in the superword register file. Here
we present a simplification of this algorithm to provide the

*We assume that two or more references that access the same
array but are not uniformly generated access distinct data
in memory, which results in a conservative estimate of the
number of memory pages.



intuition behind our approach.

We compute an upper bound of the total number of registers
that can be simultaneously live by partitioning the references
in the loop nest in groups of uniformly generated references
and computing the superword footprint of each group.

For example, the number of registers required for a group
that contains a single reference a that is variant with [ is
given by Equation 2, assuming C'(a.l) = 1.
Xy » T{a)

NEi(a) = W

(2)

where W is the register width in bytes {for example, W =
4 for a 32-bit scalar register, and W = 16 for a 128-bit
superword register such as the AltiVec's and T{a) is the
tyvpe size of a in bytes. Equation 2.

The superword footprint of a group consists of the union of
the footprints of the individual references, as some of the
reference footprints may overlap, depending on the distance
between the constant terms in the array subscripts.

The total number of registers required (TN R) to keep the
data accessed in the loop nest is computed as the sum of
the number of registers required for each group of uniformly
generated references. If the total number of registers is larger
than the number of registers available, the algorithm adjusts
the unroll amount X;, by dividing it by the ratio of TN R
and the number of available registers NREG.

J

The number of available registers NRE( is given by number
of registers in the register file minus the number of registers
reserved by our algorithm for temporary storage.

Xy

Xi = lm (3)

Since the smallest type size is used in Equation 1. all refer-
ences that have spatial reuse carried by loop [ can exploit
spatial reuse fully at the memory page level. Therefare,
choosing a loop [ that has the smallest random-mode ac-
cesses when unrolled by X; is a reasonable choice. Dividing
it evenly if too many registers are used, as in Equation 3, will
result in a solution that is also aligned to a page boundary
at the beginning of the loop. However, choosing a differ-
ent loop can result in different register requirements. For
example, if a loop is selected and then its unroll amount is
reduced to half because of register pressure, there can be an-
other loop that results in more random-mode accesses but
requires fewer registers, leading to less overall random-mode
accesses than the initial selection.

Aligning the Loop To Page Boundaries If the starting
addresses of the memory accesses in the unrolled loop body
are not aligned to a page boundary, each set of memory ac-
cesses to a same array will have one additional random-maode
access per iteration. To remove these unnecessary random-
mode accesses, step 4 of the algorithm splits the iteration
space of the chosen loop into at most three loops {head, body
and tad), so that the starting addresses in loop body are
aligned to page boundaries. The body loop contains all it-
erations that access memory between the first and the last
page boundary, with the head loop performing previous it-
erations starting from the lower bound of the ariginal loop,
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for(i=0; i<63; i++)1
Load Afi+1]
Load B[i+1]

:

for(i=63; i<1279; i+=64)/
Load Afi+1]
Load A[i42]

for(i=0; i< 1280; i+=64)]
Load Afi+1]
Load Ali+2]

Load Alif-64]
Load B[i+1]

Load Alit64]
Load Bli+1]
} :
for(i=1279; i< 1280; i++)
Load Afi+1]
Load B[i+1]

{a) Unaligned

1
I

ib) Aligned

Figure 3: Alignment by Iteration Space Splitting

and the tail loop computing subsequent iterations up to the
upper bound of the original loop.

Figure 3{a) shows an example of an unrolled loop with mis-
aligned memory references. Assuming that array A is aligned
to a memory page, the memory accesses for one iteration of
the unrolled loop span a page boundary. In (b), the itera-
tion space of the original loop is split so that the memory
accesses in the body loop start and end at page boundaries.
The lower bound of the body loop and the lower bound of the
tail loop are computed from the array subscript expressions
and the loop bounds as follows. The earliest iteration where
the mest array references are aligned on a page boundary
is used as the lower bound of the body loop. Let a be a
representative reference to be aligned, { the loop index vari-
able for the selected loop, and Ib and ub the lower and upper
bounds for I. To derive the loop bounds for the copies of
the selected loop resulting from iteration space splitting, we
begin with the starting address, addr, of the references when
I = 1b, where addr = aligned + offset. Here, aligned refers
to the largest multiple of the page size less than addr and
offset is the offset of addr within a page.

Assuming the stride of a is 1, the lower bounds of the body
loop (splitl) and the tail loop (split2) are computed by the
following equations where P is the memory page size and
T{a) is the type size of a.

L P o ffset mod P
splitl = Ib+ T~ T

. " P
split2 = wb— {ub — splitl) mod T(a]

The head loop is not needed if the reference is aligned, as
is the case when offsef mod P = 0. If Ib is constant, splitl
and split2 can be computed at compile time. Otherwise,
they are computed at run time.

If the selected reference has non-unit stride, the solution is
much more complex. In this case, we build a modular linear
equation and choose the smallest solution [5].

Reordering Memory Accesses  Finally, the reordering
step hoists loads to the top of the loop body and sinks stores
to the bottom. While being hoisted [ sunk, the loads / stores
to a same array are grouped together and sorted by their



for(i=32; i< N; i+=064)]

load Afi + 0] (RMA)
load Afi + 32] (RMA)
load Ali + 8] (RMA)
load Afi + 40] (RMA)
load Afi + 16] (RMA)

for{i=32; i< N; i4+=64)]

load Afi + 0] (RMA)
load Ali + §]

load Ali + 18]

load Ali + 24]

load Alfi + 32] (RMA)

load A[i + 48] (RMA)
load A[i + 24] (RMA)
load Ali + 56] (RMA)

load Ali + 40]
load Ali + 48]
load Ali + 56]

b )
{a) Unsorted (b} Sorted

Figure 4: Sorting Offset Addresses

Parameters Value | Unit
Handom-mode latency 12 Cyeles
Page-mode latency 4 Cyeles
Page size 256 Bytes

Table 2: Simulation Parameters

offset addresses. When there are unaligned array references
even after aligning the loop, sorting the offset addresses can
reduce the number of random-mode accesses. Figure 4 shows
an example where the page size includes 64 elements of array
A All eight memory accesses are in random mode before
sorting. After sorting the offset addresses, only two random-
mode accesses remain.

for(...)|
load A (RMA)
load B (RMA

for(.. |
load A
load B (RMA)
Computation Computation
stm‘;lB
store A (RMA)

store A (RMA)
store B (RMA)
1 1

(a) Before (b) After

Figure 5: Grouping loads and stores

This step also groups loads and stores to the same array
when possible, to exploit page mode among them. There can
be page-mode accesses between loads and stores if the last
load and the first store access the same page, and there are
no intervening memory accesses between them. The same is
true between the last store of an iteration of the innermost
loop and the first load of the next iteration. Using this tech-
nique, at most 2 random-mode accesses per iteration can be
eliminated. Figure 5 (a) shows an example where two array
objects are read and written. Assuming all loads and stores
to the same array objects access the same memory page, the
loop in (a) results in four random-mode accesses whereas (b)
has only two random-mode accesses per iteration.

4. EXPERIMENTS

Although our algorithm is applicable to general embedded-
DRAM systems, for the experiments presented in this paper
we used a compiler framework that we have built for DIVA,
as previously described. The DIVA PIM device has a 256-
bit datapath for executing superword operations in parallel.
In addition to a conventional scalar register file, the DIVA
PIM processor has 32 256-hit registers (each of which can be
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Name Description Input Size

W IVIIVL Vector-matrix multiply G4 elements

MM Matrix-matrix multiply 64 elements
YUV RGE to YUV conversion 32K elements
FIR | Finite impulse response filter | 256 filter, 1K signal

Table 3: Banchmark programs

Parallelizaticn(SLE)

|

- Unrell amount computation
- Unrell loop s=laction

- Register spill controcl

- Aligmment to page h:vu.ndal:ia?

2- Unrell -anpd-jam Z

Euperword replacement (SWR)

UMRILL
rarsion

ly/ﬂemor_v access reord.el:iny A

R ——
rarsion

( AltiVec extends=d C program -)

i

ELP

V\er:ion]

| DIVA goc I
i
[ DIVA Bimulator(DSIM) |

Figure G: Experimental Flow

treated as eight 32-bit operands, sixteen 16-bit operands or
32 8-bit operands). Thus, for data allocated to superword
registers, width W from Section 3 is 256, and for scalar reg-
isters W is 32, As the DIVA PIM devices contain no data
cache, exploiting spatial locality in the memory pages can
have significant impact on application performance.

A prototype of the DIVA PIM chip has been fabricated re-
cently [6], but the complete DIVA system is not available for
our experiments at the time of this writing. Therefore, we
used a cycle-accurate DIVA simulator(DSIM) [6], which is
modified from RSIM [20]. Table 2 shows the simulation pa-
rameters for the memory system which closely match those
of the IBM Cu-11 embedded DRAM macro [14]. In gen-
eral there can be multiple DRAM macros and multiple open
pages in a single chip, but for our experiments we assume
that only one memory page is open at any given time.

We implemented the bulk of the algorithm presented in the
previous section, and integrated it into the Stanford SUIF
compiler. In our current implementation, we have not im-
plemented alignment to page boundaries or combining loads
and stores for page mode accesses. However, these steps of
the algorithm do not affect the results for the four bench-
marks used. The input to the modified SUIF compiler is a
C program, and the output is an AltiVec-extended C pro-
gram [18] which, in turn, is translated by a preliminary ver-

sion of the DIVA gce backend.

Table 3 shows the four kernels used to evaluate the effec
tiveness of the algorithm. The kernels represent data in-
tensive applications in scientific and multimedia domains.
Figure 6 shows the experimental flow. The main algorithm
invaolves selecting unroll factors, performing unrell-and-jam
and memory access reordering, and is represented by the



hashed rectangles in Figure 6.

As previously stated, this algorithm is implemented as part
of a compiler that exploits superword-level parallelism and
locality in the superword register file. Thus, the experi-
mental methodology also includes optimizations to exploit
superword-level parallelism (SLP). Further, we expleoit spa-
tial and temporal locality in the superward register file through
a combination of unrcll-and-jam and superword replacement
(SWR). Superword replacement is applied after unroll-and-
Jjam to replace unnecessary superword memory accesses with
references to superword temporaries that will then be allo-
cated to superword registers by a backend compiler [22]. In
our previous work, we selected unroll factors for unroll-and-
Jjam that maximize reuse in superword registers; here, we use
the unroll factors determined by the algorithm in Section 3,
which are likely to be larger than in our previous work. In
some sense, the optimizations for page mode memory ac-
cesses are complementary to exploiting SLP and locality in
superword registers, and the page mode optimizations are
difficult to isolate in our compiler. In fact, becanse the SLP
and SWHR optimizations reduce the number of memory ac-
cesses, we will see less benefit from the page mode optimiza-
tions than if considered in isolation.

We use as our baseline the SLP version of the code with
no unrolling bevond what is required to exploit paralleliza-
tion of the innermost loop. The UNROLL version includes
unroll-and-jam, where the locp selected by the algorithm in
Section 3 is unrolled by the chosen amount, and inner loop
bodies are fused together. As compared to the baseline ver-
sion, this version isolates the benefits of unroll-and-jam and
superword replacement in terms of reduced memory accesses
and less loop overhead, as compared to the baseline version.
The PMA version reflects the performance improvements
due to memory access reordering, vielding the full benefit
of the optimizations for page-mode accesses.

In these experiments, we used optimization level -CO1 for
the DIVA gee backend rather than a higher level of opti-
mization. This was required to avoid reordering of memory
accesses in subsequent optimization passes, which oceurs at
higher levels of optimization. Since reordering commonly oc-
curs in backend optimizations, we discuss the implications of
combining the page-mode optimizations with other backend
compiler techniques in the next section.

For all programs but YUV, the algorithm was able to unroll
the selected loop by the unroll factor determined by Equa-
tion 1. For YUV, which references six distinct arrays, this
unroll factor was too large and resulted in register spilling.
The algorithm reduced the unroll amount by half and the
register spilling was eliminated.

We first consider how the optimizations for exploiting page-
mode memory accesses impact memory stall time. In Fig-
ure 3 shows the normalized execution times broken down
into processor busy time and memory stall time, derived
from simulation. The UNROLL version sees a significant re-
duction in both processor busy time (9% to 60%) and mem-
ory stall time (25% to T1%). The primary reason for this
is that superword replacement has eliminated a large num-
ber of memory accesses, which not only reduces memory
stall time, but also reduce processor busy time by eliminat-
ing address calculation and instruction issue associated with
the eliminated memory accesses. Further, reduction in loop
control overhead also reduces processor busy time. For all
programs, the PMA version further reduces memoary stall

368

for(i = 0y i < 64: i+4)
for(j = 0: j < 64: j++)
forik =0; k < 64; k += 8){
load C[i][j]
load BIi][k]
load Aj|[k|

store C[il[j]
(b) VMM

for(i = 0y i < 64: 144
for(j=0;] < 64;j+=8)
for(l = 0; k < 64; k++)|
load CIi[j]
load Ali][k|
load Bk]]j]

ebore O]

(a) MMM

Figure 7: SLP versions of VMM and MMM
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Figure 9: Percentage of Page-Mode Accesses

time by 21% to 33%. As compared to the UNROLL version,
we have not eliminated any instructions, but rather have
converted random-mode accesses to page-mode accesses.

Next we consider in Figure 9 the percentage of all memory
accesses that are in page mode, with the remainder in ran-
dom mode. The percentages of page-mode accesses ranges
from 25% to 37% for the baseline version of the programs.
We see a decrease in page-mode accesses as a percentage of
memory accesses for most programs for the UNROLL ver-
sion, ranging from 6% to 32%. This effect is because super-
word replacement has removed a large number of memory
accesses, and the remainder tend to be in random mode. For
example, in the VMM loop shown in Figure 7{a) after SLP,
references to C[11[j] in the k-loop are loop-invariant after
unrolling, and are usually removed, but were page-mode ac-
cesses in the SLP version due to the preceding store to the
same location. In MMM, the page-mode percentage actually
increases for the UNROLL version, as can be seen in Fig-
ure 7(b). References to A[1] [k] are random-mode accesses,
and are eliminated by superword replacement. For the PNA
version, which reflects the same number of memory accesses
as the UNROLL version, the percentages of page-mode ac-
cesses range from 63% to 87%.

These results show that our algorithm has been successful
at increasing the percentage of page-mode accesses and re-
ducing the memory stall time. We now see how the ap-
proach impacts the overall performance. Figure 10 shows
the speedups for the SLP, UNROLL and PMA versions of
Figure 6. Overall speedups as compared to the SLP base-
line range from 1.25 to 2.19. Maost of this spesdup comes
from the 1.19 to 1.89 improvement from unroll-and-jam and
superword replacement, as can be seen from the UNROLL
version. The speedup of the PMA version over the UNROLL

version ranges from 1.04 to 1.16.

5

5. IMPLEMENTATION ISSUES

In this section, we consider in general terms how to in-
corporate this algorithm into current and future compilers.
First, the compiler backend optimizations must be aware

that page-mode optimizations are being performed. Other-

wise, instruction recrdering optimizations to increase instruction-

level parallelism may undo the effect of the page-mode opti-
mizations. A simple solution is to keep the relative order of
memory operations intact when performing instruction re-
ordering. There is an interesting tradeoff space that must
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Figure 10: Speedup Breakdown

be considered, since page-mode optimizations which favor
memory accesses to the same page may potentially lengthen
the critical path to performing computations, where mul-
tiple operands from different pages may be required. This
potential problem is mitigated if there are a large number
of memory units that can operate in parallel, or if there are
multiple memory pages from which data can be accessed
rather than the single page used in our experiments.

A second issue is how to combine this approach with cache
optimizations for devices that have on-chip data caches. In
cache-based architectures, the page-mode optimizations are
still applicable as long as the unrclled footprint for an object
exceeds the cache line size. In such a case, the spatial locality
within the memory page complements spatial locality within
a cache line.

6. RELATED WORK

Previous research has identified the benefits of exploiting
page-mode DRAM accesses [19, 17, 3, 21, 11]. Moyer mod-
eled memory systems analytically and developed a compiler
technique called access ordering that reorders memory ac-
cesses to better utilize the memory system [19]. McKee et
al. described a Stream Memory Controller (SMC) whose ac-
cess ordering circuitry attempts to maximize memory system
performance based on the device characteristics [17]. Their
compiler is used to detect streams but access ordering and
issue is determined by the hardware. Chame et al. manu-
ally optimized an application for a PIM-based {embedded-
DRAM) system [3] by applying loop unrolling and memory
access reordering to increase the number of page-mode ac-
Ccesses,

Panda et al. have developed a series of techniques to exploit
page-mode DRAM access in high-level synthesis [21]. Their
techniques include scalar variable clustering, memory access
reordering, hoisting and loop transformations. While their
ASIC design was able to exploit page-mode memory access,
they do not describe an algorithm for automatic code gen-
eration. Grun et al. have optimized a set of benchmarks
to better utilize efficient memory access modes for their IP
library based Design Space Exploration [11]. However, their
focus was on accurate timing models of the hardware system
description.

This paper is distinguished from previous research as the
design and implementation of a compiler algorithm to ex-



ploit page-mode automatically. Although the experiments
are performed for a PIM-based system [12], this compiler
framework is applicable to embedded-DREAM systems and

can also be used as a preprocessor for high-level synthesis.

7. CONCLUSION

This paper presented a compiler algorithm for expleoiting
page-mode memory access in embedded-DEAM systems. Our
compiler algorithm has been implemented in the Stanford
SUIF compiler infrastructure and evaluated for four scientific
and multimedia kernels. The speedups achieved by exploit-
ing page-mode memory access alone range from 1.04 to 1.16
for four multimedia kernels, resulting in overall speedups
ranging from 1.25 to 2.19 when combined with optimizations
targeting superword-level parallelism and locality. These
results show that there is a distinct benefit in exploiting
page-mode memory access in embedded systems, where the
DEAM access time dominates the memory latency seen by
the processor. Furthermore, our results show that for em-

bedded systems with support for superword-level parallelism [23,

1, 12], optimizations for exploiting the DRAM's page-mode
accesses are complementary to optimizations for superword-
level parallelism and superword-level locality.
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Abstract

In this paper. we describe an algorithm and implementation of locality optimizations for archi-
tectures with instruction sets such as Intel’s SSE and Motorola’s AltiVee that support operations
on superwords, 1.2, aggregate objects consisting of several machine words, We treat the large su-
perword register file as a compiler-controlled cache, thus avoiding unnecessary memory accesses
by exploiting reuse in superword registers. This research is distinguished from previous waork on
exploiting reuse in scalar registers because it considers not only temporal but also spatial reuse. As
compared to optimizations to exploit reuse in cache, the compiler must also manage replacement,
and thus, explicitly name registers in the generated code. We describe an implementation of our
approach integrated with a compiler that exploits superword-level parallelism (SLP). We present a
set of results derived automatically on 4 multimedia kernels and 2 scientific benchmarks. Our re-
sults show speedups ranging from 1.3 to 3.1X on the & programs as compared to using SLP alone,
and we eliminate the majority of memory accesses.

1. Introduction

[n response to the increasing importance of multimedia applications in embedded and general-
purpose computing environments, many microprocessars now incorporate an expanded instruction
set and architectural extensions specifically targeting multimedia requirements. The core compo-
nent of such architectural extensions i1s a functional unit that can operate on aggregate ohjects,
performing bit-level operations, or SIMD parallel operations on variable-sized fields in the object
(e, 8, 16, 32 or 64-bit fields). If the aggregate ohjects are larger than the size of a machine word,
then thev are called superwords [1]. Examples include Motorola’s AltivVec and Intel’s SSE, a de-
scendant of MMX. If the same size as the machine word, then individual felds are referred to as
subwaords [2]. A related class of architectures employ processing-in-memory (PIM ) technology to
exploit the high memory bandwidth when processing logic 1s combined on chip with large amounts
of DRAM: several PIM-based architectures relv on superword parallelism to make more effective
use of available memory bandwidth [3, 4, 5. 6].

While multimedia extension and related architectures have been available for some time. con-
venient methodologies for developing application code that targets these extensions are in their in-
fancy. There 1s recent compiler research Tor such architectures to automaticallv exploit superword-
level parallelism., performing computations or memory accesses in parallel in a single instruction
[.7.8.9,10].

In this paper. we recognize an additional optimization opportunity not addressed by this previous
work. An important feature of all such architectures is a register file of superwords (e.g., each 128
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bits wide in an AltiVec), usually in addition to the scalar register file. A set of 32 such superword
registers represents a not insignificant amount of storage close to the processor. Accessing data
from superword registers, versus a cache or main memory, has two advantages. The most obvious
advantage is lower latency of accesses; even a hit in the L1 cache has at least a l-cvele latency.
Accesses to other caches in the hierarchy or to main memory carry much higher latencies. Another
advantage is the elimination of memory access instructions, thus reducing the number of instructions
to be issued.

In this paper, we treat the superword register file as a small compiler-controlled cache. We
develop an algorithm and a set of optimizations to exploit reuse of data in superword registers
to eliminate unnecessary memory accesses, which we call superwaord-level localitv. We evaluate
the effectiveness of these superword-level locality (SLL) optimizations through an implementation
integrated with the algorithm for exploiting superword-level parallelism (SLP) presented in [ 1].

Our approach is distinguished from previous work on increasing reuse in cache [11. 12, 13, 14,
15, 16, 17, 18], in that the compiler must also manage replacement, and thus, explicitly name the
registers in the code. As compared to previous work on exploiting reuse in scalar registers [ 18,
19, 20]. the compiler considers not just temporal reuse, but also spatial reuse, for bath individual
statements and groups of references. Further, it also considers superword parallelism in making

its optimization decisions. Exploiting spatial and group reuse in superword registers requires more
complex analvsis as compared to exploiting temporal reuse in scalar registers, to determine which
accesses map into the same superword.

In conjunction with exploiting SLP, the algorithm performs what we call superword replace-
ment, 1o replace accesses (o contiguous array data with superword temporaries and exploit rense by
replacing accesses to the same superword with the same temporary. Following this code transfor-
mation, a separate compilation pass will be able to allocate superword registers corresponding to
the superword temporaries. To enhance the effectiveness of superword replacement, it is combined
with a loop transformation called waroll-and-jam. whereby outer loops in a loop nest are unrolled,
and the resulting duplicate inner loop bodies are fused together. Unroll-and-jam reduces the dis-
tance between reuse of the same superword, when reuse is camried by an outer loop, and brings
opportunities for superword replacement into the innermost loop body of the transformed loop nest.
The optimization algorithm derives appropriate unroll factors for each loop in the nest that attempt
o maximize reuse while not exceeding the number of available registers.

The contributions of this paper are as follows:

o Analgorithm for exposing opportunities for compiler-controlled caching of data in superword
register files using unroll-and-jam. The two main components of this algorithm are a model of
the number of memory accesses and registers required associated with a set of unroll factors,

and a strategy for navigating the search space of possible unroll factors.

o Adescription of a set of code transformations, which in aggregate we call superword replace-

ment, for exploiting superword register reuse,

o Experimental results. derived automatically, comparing performance of six benchmarks/multimedia
kernels optimized for parallelism onlv, SLP, and optimized for both parallelism and superword-

level localitv. Our results show speedups ranging from 1.3 to 3.1X as compared to using SLP
alone, and we eliminate the majority of memory accesses.
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This paper extends an earlier description of this work n several ways [21]. We have extended
the algorithm and register requirements analvsis to exploit group-temporal reuse across ilerations
of the transformed loop nest. We have also greatly expanded the description of code generation.
[n the experimental results description, we have improved the results and provided a more detailed
breakdown of the contributions of the different techniques.

The remainder of the paper is organized into 8 sections. Section 2 motivates the problem and
introduces terminology used m the remainder of the paper. Section 3 presents an overview of
the superword-level locality algorithm. Section 4 describes how the algorithm computes the total
numiber of registers required for exploiting reuse and the resulting number of memory accesses.
Section 5 describes aspects of how the search space 1s navigated. Section 6 presents optimizations
to actually achieve this reuse of data in superword registers. Section 7 presents experimental results
dertved automatically by an mmplementation in the Stanford SUIF compiler. Section 8 discusses
related work and Section 9 presents conclusions and future work.

2. Background and Motivation

In many cases superword-level parallelism and superword-level locality are complementary op-
timization goals, since achieving SLP requires each operand to be a set of words packed into a
superword, which happens, with no extra cost, when an array reference with spatial reuse 1s loaded
[rom memory into a superword register. Therefore, in many cases the loop that carries the most
superword-level parallelism also carries the most spatial reuse. and benefits from SLL optimiza-
tions. In this paper, we achieve SLL and SLP somewhat independently, by integrating a set of SLL
optimizations into an existing SLP compiler [1]. The remainder of this section motivates the SLL
oplimizations.

Achieving locality n superword registers differs from locality optimization for scalar registers.
To exploit temporal reuse of data in scalar registers, compilers use scalar replacement to replace
array references by accesses to temporary scalar variables, so that a separate backend register allo-
cator will exploit reuse in registers [ 19]. In addition. unroll-and-jam is used to shorten the distances
between reuse of the same array location by unrolling outer loops that carry reuse and fusing the
resulting inner loops together [19].

In contrast, a compiler can optimize Tor superword-level locality in superword registers through
a combination of unroll-and-jam and superwaord replacement. These techniques not only exploit
temporal reuse of data. but also spatial reuse of nearby elements in the same superword. In fact, even
partial reuse of superwords can be exploited by merging the contents of two registers containing
superwords that are consecutive in memaory (see Section 6.4). Thus, as is common in multimedia
applications [22]. streaming computations with little or no temporal reuse can still benefit from
spatial locality at the superword-register level, in addition to the cache level.

While cache optimizations are bevond the scope of this paper, we observe that the SLL optimiza-
tions presented here can be applied to code that has been optimized for caches using well-known
optimizations such as unimodular transformations, loop tiling and data prefetching. When combin-
ing loop tiling for caches, superword-level parallelism and superword-level locality optimizations,
the tile sizes should be large enough for superword-level parallelism. and for unroll-and-jam and
superword replacement to be profitable,

These points are tllustrated by way ol a code example, with the original code shown in Fig-
ure l(a). This example shows three optimization paths. Figure 1{d} optimizes the code to achieve
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fori 1=0; 1< 14++) for(1=0; 1<"n; 1++)

for (j=0; j="n: j++) for (j=0; j=n: j+=sws)
ali]j] =ah-1703] * bla] + b[1+1]: afi][jtsws-1] = a1y +sws-1]* b[1] + b[i+1]:
(a) Original loop nest. (d) After superword-level parallelismi) loop).
for(1=0; 1< n; 1+=2) for(i=0; 1<n; 1+=2)
for (j=0; j="n: j++) | for (j=0; j<n: |+= sws) |
ali][j] =ali-1][1] * b[i] +b[1+1]: a[i][j:+sws-1] = a[i-1[[j:)+sws- 1] #* b[i] + b[i+1]:
ali+1][j] =al][] * bla+1] + B1+2]: a1 tsws-1] = a1 +sws-1] * b[i+1] + bl1+2]:
1 1

(b) Unroll-and-jam on the example m {a)ii loop).  (e) Unroll-and-jam on the example in (d)(i loop).

tmpl = h[0]; tmpl [0:sws-1] = b[0sws-1];
fori 1=0; 1<z 1+=2) stmpl = tmpl[0]:
tmp2 = H1+1]; stmp2 = tmpl[1]:
tmp3 = b[1+2]; hield
for (1=0; j<nz 7+ for(1=0; 1< n; 1+=2) 4
tmp4 = a[i-1][j] * tmp! + tmp2; N ield” denotes an index into "tmp 1" for stmp3
a[i+1][j] = tmpd * tmp2 + tmp3; iff field = 0)
ali][j] = tmpd; tmpl[O:sws-1] = b[i+2n+swst] |:
L stmp3 = tmp1[field);
tmpl = tmp3; for (j=0; j=<n: j+= sws) |
! tmp2[D:sws- 1] = a[i-1][1+sws-1] * stmp | + stmp2:
alit] [ tsws- 1] = tmp2[lsws-1] * stmp2 + stmp3;
ic) After scalar replacement on the code m (c). ali][jtsws-1] = tmp2[O:sws-1];
1

I
stmpl = stmp3:

stmp2 = tmp 1 [field+1]:
field = { field+2 M sws;

() After superword replacement on code in ()
Figure 1: Example code.

superword-level parallelism. Here. sws, an abbreviation for superword size, is the number of data
elements that fit within a superword. For example. if e and b are 32-bit float variables, on a machine
with 128-bit superwords, surs |. In Figures 1(b) and (c¢), we show how the orginal program
can instead be optimized to exploit reuse in scalar registers, using unroll-and-jam and scalar re-
placement, respectively. In Figures 1{e) and (). we combine these 1deas, using unroll-and-jam and
superword replacement, respectively, to transform the code in (d) for both superword-level paral-
lelism and superword-level locality.

Table | shows how the three different optimization paths affect the number of array accesses to
memory in the final code. The original code has n? reads and writes to arrav « and 2n? reads to array
b, Exploiting superword-level parallelism in loop 7, as in Figure 1(d) reduces the number of reads
and writes to array o by a factor of swes since each load or store operates on sws contiguous data
items: for array b, there is no change since the array is indexed by ¢ rather than 5. If instead the code
was optimized for scalar register reuse, as in Figure [(c), we can reduce the number of array reads
of a down by a factor of 2, and reads of b by a factor of », with the number of writes remaining the
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Origial | Scalar register reuse only SLP only SLP and SLL
Figure l{a) Figure lic) Figure 1(d) Figure 1(1)
[":'Ji.ldbi :;H‘: -'.l‘:_-""j - 12 2.-,-2 | .-.-z_.-"_-.-.l."_»: [,-,-z:.-"‘

9

\]‘u"-l_'ill_‘:-\' n .'.12 .-.12..-"}-:.'."_\; .',-2:.-'.3;.'.".'{

Fn)/sws

e

Table 1: Number of arrav accesses under different optimization paths.

same. By combining superword-level parallelism and superword-level locality as in Figure 1{1), we
see that the number of reads and writes 1s further reduced by a factor of sws. Figure L) tllustrates
some of the challenges in exploiting reuse in superwords. Analvsis must identify not just temporal,
but also spatial reuse, and for both individual statements and groups of references. The compiler
also must generate the appropriate code to exploit this reuse: for example, we select scalar fields of
b from the superword, since we are not parallelizing the ¢ loop.

The remainder of this paper describes how the compiler automatically generates code such as 1s
shown in Figure (1), and the performance improvements that can be obtained with this approach.

3. Overview of Superword-Level Locality Algorithm

The superword-level locality algorithm has three main steps, as summarized below. Each step will

be described in more detail in the three subsequent sections.

Step 1: Identifving Reuse. The first step of the algorithm is to identifv both arrav references
and loops carrving reuse. The array references carryving reuse are the ones for which superword
replacement mayv be applicable. The loops carrving reuse are the ones to which the algorithm will
consider applving unroll-and-jam.

Reuse between two distinet array references in an n—dimensional loop nest is determined from
data dependences, in the form of dependence vectors, d {dy.dg. ... .dy}23]. A dependence
vector captures the vector distance, in terms of the loop iteration space, such that the two references
may map to the same memory location. Each vector element o; mayv be either a constant integer,
t {a positive direction where the distance 1s not fixed), — (a negative direction), or = (the direction
and distance are unknown). We refer to a dependence vector as being lexicowraphically positive 1f
the first non-zero d; 1s + or a positive integer.

For the purposes of reuse, the relevant dependences carrving reuse are a subset, and are charac-
terized as follows:

. We consider onlv true dependences (writes followed by reads). input dependences (reads
followed by reads), and output dependences (writes followed writes). Although output de-
pendences do not capture reuse of the same data value. they suggest an opportunity for elimi-
nating unnecessary writes back to memorv. Anti-dependences (writes followed by reads) are

not considered.

2. We consider only lexicographically positive dependences.

[FS]

A dependence vector must be consistent, i.e., the dependence distance in the iteration space
must be constant, or it must be invariant with respect to one of the loops n the nest.
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tmp[0:3] = A[L:1+3]:
vee2[0:3] = Af+4a+7);
for(1=0; 1= N; 1+=4)!

for{1=0; 1= N; 1+=4)! vee 1[0:3] = tmp[0:3]:
vecl[0:3] = Aa+3]: tmp[0:3] = vec2[0:3]:
vec2[0:3] = Af+8a+1 ] vee2 [0:3] = A[+8a+11];

i |

(a) Original (b} After exploiting reuse

Figure 2: Reuse Across [terations

Applving unroll-and-jam to a loop ¢ with a consistent dependence varving with respect to loop
¢ can create loop-independent dependences in the innermost loop of the unrolled loop body. In the
example in Figure 1(a), there 1s a true dependence between references Afi][7] and A2 — 1][7] with
distance vector (1.0}, Alter unroll-and-jam. a loop-independent dependence 1s created between
Al#][7] in the first statement and A[#][] n the second statement of the loop body. creating a reuse
OppOrtunity.

In addition to reuse between copies of a reference created by unrolling, there can be reuse across
loop iterations. References with consistent dependences carried by a loop have group reuse which
can be exploited by using extra registers to hold the data across iterations. As in previous work [19],
our algorithm exploits reuse across iterations of the innermost loop only, because exploiting reuse
carried by an outer loop could potentially require too many registers to hold the data between uses.
Figure 2 shows how reuse can be exploited across iterations of the innermost loop by using one
register to keep the data that is reused on everv two iterations.

For loop-invariant references, unroll-and-jam generates loop-independent dependences between
the copies of the reference in the unrolled loop bodv, since the same location is being referenced by
each copy.

Step 2: Determining unroll factors for candidate loops.  The algorithm next determines the
unroll factors for each candidate loop that carries reuse, as previously described, and for which
unroll-and-jam is legal. The optimization goal is as follows.

Optimization Goal: Find unroll factors (X, Xo. Xy} for loops 1 to n inan n-deep
loop nest such that the number of memory accesses 18 minimized, subject to the con-
straint that the number of superword registers required does not exceed what is avail-

ahle.

The algorithm determines the unroll factors (X, Xo. ... X}, by searching for the combination
of unroll factors that satisfies the above optimization goal. To guide the search, the algorithm
calculates the total number of registers required for exploiting reuse, which is the sum of the number
of superwords accessed by the references in the loop body after unroll-and-jam is applied, plus the
number of registers needed for holding data across iterations of the innermost loop.  Section 4
describes how the algorithm computes the total number of registers required for exploiting reuse
and the resulting number of memory accesses. Section 5 describes aspects of how the search space
Is navigated.
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Step 3: Code Transformations - Unroll-and-Jam, Superword Replacement, and Related Opti-
mizations. Once the unroll factors are decided, unroll-and-jam is applied to the loop nest. Array
references are replaced with accesses to superword temporaries. As part of code generation, our
compiler performs related optimizations to reduce the number of additional memorv accesses and
register requirements introduced by the SLP passes. These code transformations are the topic of

Section 6.

4. Computing Registers Required and Memory Accesses

This section presents the computation of the number of registers required for exploiting data reuse
in superword registers and the resulting number of memory accesses, which are the parameters used
to guide the search for the combination of unroll amounts to be applied to the loop nest. The next
subsection describes how the algorithm computes the superword fooiprint, which represents the
number of superwords accessed by the unrolled iterations of the loop nest as a function of the unroll
factors. Subsection 4.2 presents the computation of the extra registers needed for reusing data across
loop tterations. The total number of registers and the corresponding number of memory accesses
are computed in subsection 4.3,

4.1 Computing the Superword Footprint

This section presents the computation of the superword footprint of the references V' in a loop nest,
Fr (V). after unroll-and-jam is applied to the nest with unroll factors (X, Xo. ... Xy )

The algorithm for computing the superword footprint for a loop nest first partitions the refer-
ences in the loop into groups of wuniformiy senerated references [ 18], that is, references to the same
arrav such that, for each array dimension, the array subscripts differ only by a constant term!. Then,
for each group of references, 1t computes the number of superwords accessed n the unrolled loop
hodv. Finallv, the total number of superwords is computed as the sum of those of each group of
uniformly generated references.

We first discuss how o compute the superword footprint of a single reference as a function of
the unroll factors of each unrolled loop. Then we discuss how to compute the superword footprint
of a group of uniformly generated references. The superword footprint of a group may be smaller
than the sum of the individual fooptrints, since the same superword may be accessed by two or more
copies of the original references when the loops are unrolled.

Our method determines the number of superword registers required to hold the data accessed by
the loop references in the unrolled loops. However, extra registers may be needed to, for example,
align a superword operand which is already kept in superword registers. That is, the computation
may require more registers than those needed for storing the data. Therefore, we reserve some
scratch registers for manipulating data and compute the number of registers needed just for storing
the data accessed in the unrolled loops.

To simplify the presentation, we assume a loop nest of depth » where all arrav references have
arrav subscripts that are affine functions of a single index variable (SIV subscripts)* . We also assume
that each p-dimensional array referenced by the loop 1s defined as A [sp|[sp_1] .. . [s1]. where sp 18

I. We assume that two or more references that aceess the same array, but are not uniformly generated, access distinet
data in memory, which resulis in a conservative estimate of the number of superwords aceessed by the group and of
the number of registers required.

2. Our current implementation can handle affine SIV subseripts and certain affine MIV subseripts.

377



supervard footprint of size -k %Tls
N = | " - o
L} 1 m b )
BupeTWDLd cffust = a‘hs_
"
Superwords o el bt R .
in menary T o T 1 [s
s
o Supervaris L | a— L L_/F hiimns | |
e In memory I 1 I 1 L I 1 |
] g2+b
u| w3t - J
N T a1 Tls
vl .
i a2} Tls
B | apion+b )
g, +h 1
suparward faatprint. EEES o Kot _ﬂ_;
(a) h | and ap < sws by Fa = 1

Fi

oure 3: Superword footprint of a single reference.

the size of dimension h, 1 = I < 5 Dimension 1 is the lowest dimension of the arrav, i.e., the
dimension in which consecutive elements are in consecutive memory locations. A reference v to
array A is then of the form Alag « Iy + bpllap 1« {5 1+ by q] .o [eg = 1y + by Thus, a reference
with SIV subscripts has each array dimension f» associated with just a single loop index variable in
the nest, and the loop index variable associated with Fz is represented as lp. We also assume that the
arrays are aligned to a superword in memory and that the loops are normalized.

4.1.1 SUPERWORD FOOTPRINT OF A SINGLE REFERENCE

Foreach reference v with array subscripts ag + I + b where i 1s the array dimension and [y, 1s the
loop index variable appearing in subscript [, the number of superwords accessed by all copies of ©
when [ 1s unrolled by Xy, 1s given by the superword fooipring of v in Iy, or F, (v).

When dimension /i is the lowest array dimension (b = 1), the superword footprint is given by
Equation (1). Equation { la) corresponds to the footprint of a loop-invariant reference. Equation ( 1b)
corresponds to the footprint of a reference with self-spatial reuse within a superword, as illustrated
in Figure 3(a), and (1¢) holds when the reference has no spatial reuse.

1 (a) ifap =10
. Xy, #ay P o
Fi, (v) [—;%.si-‘ (b} ifap < sws i)
_11-{1-_, (c) ifap = sws

When ! 15 one of the higher dimensions, 1 < & < p, and loop [, 1s unrolled, the offset between
the footprints of each copy of v 18 ap + ]'[';":ll s;, where s; is the size of the /** array dimension,
as shown in Figure 3(b). Assuming that the size of the lowest array dimension {sq) is larger than
sws, which 1s usually the case in practice for realistic array dimensions, each copy of + in the
unrolled loop body corresponds to a separate footprint, as shown in Figure 3(b). Therefore the size
of the footprint of v in Iy, is the sum of the Xy, disjoint footprints, and is recursively defined by
Equation (2), where Fy (] 1s computed as in Equation (1),
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Figure 4: Superword footprint of a group of references.

For a single reference, the number of superword registers required to keep the superword foot-
print given by Equation (1) and the number of scalar registers that would be required if the same
unrell factors were used differ only when ap, <0 =sws, that 15, when spatial reuse can be exploited in
superword registers. For a group of uniformly generated references the analysis must also consider

oroup reuse, as discussed next.

4.1.2 SUPERWORD FOOTPRINT OF A GROUP OF REFERENCES

The number of superwords accessed by a group of uniformly generated references V' = o e, o |
when loop [ is unrolled by Xy, is the superword footprint of the group, Fy, (V). The superword
footprint of a group consists of the union of the footprints of the individual references, as some of
the reference footprints may overlap, depending on the distance between the constant terms in the
array suhscripts.

The footprints of two uniformly generated references may overlap in dimension & only if they
overlap in all dimensions higher than . For example, the footprints of references A[2i][j + 2
and [2i + 1][4] do not averlap in the highest (row) dimension, since the first reference accesses the
even-numberad rows of the array and the second accesses the odd-numbered rows. Therefore the
footprints cannot overlap in the lowest {column) dimension. On the other hand, the footprints of
Al24]]7 + 2] and A[20 + 4][4] overlap in the row dimension for iterations ¢y, {2, 1
such that 2iqy = 2ip + 4. For the iterations of 7 in which the footprints overlap in the row dimension,

< i1 € Xy,
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the footprints may overlap in the column dimension if there exist tterations jp. ja, 1 < j1. j2 = X,
such that 71 + 2 = ja.

The superword footprint Fr (V) of a group V', following unroll-and-jam. is computed as fol-
lows. First, the array dimensions with array subscripts that are a function of any of the unrolled
loops are identified. Then. for each such dimension [, from highest to lowest dimension. the foot-
print is computed assuming that the footprints of the references in the group overlap in the higher
dimensions. For each dimension &r = 1, the algorithm partitions references into subsets such that
each subset corresponds to a disjoint footprint in dimension . Then, for each subset, the algorithm
recursively computes the footprint in dimension fr — 1, as we now describe.

Dimension & is the lowest dimension (1 = 1).  We first compute the group footprint of two array
references, and then we extend it for me references. The footprint of group V Ty, v9}, where
references vy and vg have lowest dimension subscripts apg g + by and ap + [y + by such that by < by,
when loop {g 1s unrolled by Xy, is given by Equation (3} in Figure 4. Equations (3a) and (3b) apply
when the two footprints overlap, that is, when (ha — by} < ap + Xy, . as shown in Figures 4(a) and
(b). When the footprints do not overlap, the group footprint is the sum of the individual footprints,
as in Equation (3¢), with examples in Figures 4(c) and (d).

In Figure 4(a), the references have no self-spatial reuse, that is, ap, = sws, and each individual
footprint 1s a set of Xy, superwords. The foatprints overlap if (ba — by} 1s evenly divided by ap and
there exists an integer value k, 1 < & < Xy, , such that & = 1+ (ha — by ) /ap. This case corresponds
to Equation (3a), which computes the group footprint precisely when the two references have
croup-temporal reuse. In Figure 4(b), both references have self-spatial reuse within a superword,
that is, ap <0 sws. The corresponding footprint size is given by Equation (3b). In Figure 4(c), v has
no self-spatial reuse and each copy of vy in the unrolled loop body accesses a distinet superword.

and the same 1s true for ve. In Figure 4(d) both oy and e have self-spatial reuse.

The footprint of a group V Lo vae ety b with array subscripts aq + Iy + & such that
1 < ¢ < mand by = by = ... = by, 1s computed by first partitioning V' into subgroups with
disjomnt footprints in the lowest dimension, as follows. A subgroup Vi = {0, 0000 Vi |
s defined by lowest dimension subscripts ay 1y + by, where 749, Gnin < 7 = Ymars

I:ll-JJi 1 = 'il"..ii )
(bj —bj_1 < ay = X, ) A
Fal |il.lE-III W ! 1 = # .Y[I )M

{h; . N
W min lmin

[ (LT FJ.m 'r"iu,-q_|-+1 - |il.li-“_|”_|_ > (1 X I ) (4)

Then the group footprint V' is computed as the sum of the disjoint footprints of sets 15, as in

Fi, (V) Z Fy, (Vi) i5)
i

The footprint of each subgroup Vi is computed by extending Equation (3) to me = 2 references.
For example, when the references in V- have self-spatial reuse, as in Equation (3b) {aq < sws), each
subgroup Vi has a footprint consisting of contiguous superwords, since by — by g <2 ay + Xy, for all
g such that tin < 7 = #mae. The footprint of V; consists of the union of the mdividual footprints,
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with size given by Equation (6).

Fp, (Va) Fry ({0 im0 Vi 1)
g # _11- } b o — b i
1 |!'| Eynar trnin [ {,_‘ ]
surs

Forexample, if siwvs =4 and X =4, group V' = {A[¢]. A[¢ + 2], A[¢ + 5], A[¢ + 12], A[: + 14]}
can be partitioned into two subgroups V) = {A[i]. A[i+2], A[i+5]} and V5 = {A[i+12], A[i+14]]
with disjoint superword footprints.  Since the references have self-spatial reuse, each individual

footprint and the footprint of each subgroup is a set of contiguous superwords. The total number of
superwords accessed by the references m V' is the sum of the disjoint footprints of sets V5 and V5,

as i (7).
s R Lo l«d4+5—0 [ #d+ 14— 12
’Lh (v f’gl i 1) f’;l i a) ’V J | J gl (7
Dimension ©: is not the lowest dimension (& # 1).  When & 1s one of the higher dimensions, the
superword footprint of Vo= {ey. va. gy i loop Iy 18 again the union of the individual footprints.

From Section 4.1.1, the footprint of each reference v in the unrolled loop body consists of a
set of Xy, disjoint footprints (each footprint corresponding to a copy of v; created by unrolling).
and the offset between each pair of consecutive footprints 1s ap + ]'[J;‘zl1 53, where s; 1s the size of
dimension 1.

Therefore the footprints of different references in the group may overlap, depending on the
values of ap. by and the unroll factor Xy, . The footprints of two uniformly generated references
vy and vg overlap in dimension /i if there exists an integer value k. 1 = I = X, that satisfies
Condition (8):

ap # k+ b = ap + ba. (8)

that is. 1f {(ba — by )%ay, = Uand (he — by ) /ey + 1 = Xy, . Furthermore, if there exists F satisfving
the above condition, the footprmts of the last Xy, — & + 1 copies of vy n the unrolled loop body
overlap with those of the first Xy, — & + 1 copies of 2. The footprint of {1, v2} 1s then given by
Equation (9).

f;J (. g (E—1)+ ‘L-{h—l g+ [_11_;1.! — k4 1)+ 'F'-Fh—l feg . g ) - (k= 1)» JF'-J'J-_._| (g (9]

To compute the size of the entire footprint of V7 in I, our algorithm partitions V' into subsets
Vi = {vi, ;. een v, } such that, for any j. imin < 7 < imaz. the pair {v;_1.v;} satisfies Condi-
tion (8). The footprint of V5 is the union of the footprints of its reference set and i1s computed by
extending Equation (9) to more than two references.

4.2 Registers for Reuse Across lterations

[n addition to superword registers for exploiting reuse i the body of the transformed loop nest, extra
superword registers may be required for exploiting reuse across iterations of the innermost loop for
references with group-temporal reuse carried by the innermost loop n of the transformed loop nest.

To compute the number of registers needed to exploit group-temporal reuse across iterations
of loop w. the algorithm examines groups of references that have consistent dependences carried
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by 7.* Assume that unroll-and-jam has been applied to outer loops in a nest. After subsequently
unrolling the innermost loop, extra registers are required if the reuse distance between references
prior to unrolling loop nis larger than the unroll amount, fe, if dy = Xy, as in Figure 2, where
idp = Sand Xy = 4.

Let O = oy g, g | be a set of references that 1s a subset of a uniformly generated set, and,
prior to unrolling the innermost loop resulting from unroll-and-jam by X, each pair {vy. 05 ) InC
has a consistent dependence d* = (0,0, ....d% ), dY = 0. Also, assume that the array subscript of the
lowest dimension of each reference vy in ' is of the form a; « i+ by, and that by < by < = by,
Unrolling loop n generates Xy copies of each original reference o in the body of the transformed
loop nest.

When %, is a multiple of the unroll factor X, each pair of copies of references {1, ;1) will
reuse data after %LL iterations. When %, is not a multiple of Xy,. some copies of a reference will
reuse data after [w'f{-'l'—l] — 1 tterations of v, while others will have a reuse distance of [w'f{-'l'—l] requiring
one more register per copy. Thus, each pair of copies of references (vy. wip1) requires at most
[%H — 1 additional superword registers to keep the data across iterations of the imnermost loop.

The number of registers required to exploit reuse across iterations of » by all pairs of copies
15 the number of registers required for each pair times the number of registers required to keep the
superword footprint of reference vy in the transformed loop nest:

Balvivig) ( ﬁ — 1) = Friv) (10)
| ) U=, )
Equation (10} may overestimate the number of registers if the footprint component (Fr{vg)) over-
estimates registers, or for certain copies of references if f, is not a multiple of X .
The total number of registers required for exploiting reuse across iterations for set ' with lead-

ing reference vy 1s given by:

RA(C) Z { :;r—’; — 1) x Fr(v) (11)

1<i<m

4.3 Putting 1t All Together

Subsections 4.1 and 4.2 describe the computation of the number of registers required to exploit
reuse in the bodv of the nermost loop (superword footprint) and across iterations of the mner-
most loop, assuming that unroll-and-jam has been applied the loop nest. This section presents the
computation of the total number of registers required and the total number of memory accesses in
the innermost loop of the transformed loop nest, which are the metrics used to prune and guide the
search for unroll factors described in Section 3.

The total number of registers required to exploit reuse 1s the sum of the superword footprint of
the references in the innermost loop of the transformed loop nest and the number of registers needed
for exploiting reuse across iterations of the same mnermost loop.

The superword footprint of the references, F7 (V7). 1s computed as in subsection 4.1. The total
number of extra registers required for exploiting reuse across iterations of the mnermost loop is

3. Note that such references, if their lowest dimension varies with n, may also have group-spatial reuse across loop
iterations. However, our algorithm focuses on exploiting group-temporal reuse across iterations, since most of the

group-spatial reuse is achieved within the bady of the unrolled loop.
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computed as in subsection 4.2, Tor each set €' of loop-variant references with consistent dependences
carried by the innermost loop.
The total number of superword registers required is then:

R(V) FL(V)+Y Ra(C) (12)
i

The total number of memory accesses in the nermost loop of the transformed loop nest 1s the
sum of the memory accesses of each group € of references that are variant with the innermost loop
e and have consistent dependences carried by w. For each group 7, the number of memory accesses
15 given by the superword footprint of the leading reference of the group, of:

M(C) = Fr(v]) (13)

The total number of memory accesses 1s then:
MV Zf"[,[."f] (14)
C

5. Search Algorithm

As previously stated, the goal of the search algorithm is to identify the unroll factors for the loops in
the loop nest such that the number of memory accesses 1s minimized, without exceeding available
registers. Thus, we must consider an n—dimensional search space. where each dimension has the
number of elements corresponding to the iteration count of the loop. A full global search of this
search space is prohibitively expensive, especially for deep loop nests or large loop bounds. Thus,
we use a number of strategies for pruning the search space.

First, we eliminate from the search loops that do not carry reuse or for which unroll-and-jam 1s
not safe. Further, we rely on the observation that the number of registers required monotonically
mncreases with the unroll factor of a loop, assuming that all other unroll factors are fixed. Thus,
we need not search bevond the unroll factors that exceed available registers. This latter point sig-
nificantly prunes the search space in that the number of registers is usually fairly small {e.g., 32
superword registers on the AltiVec), so that the search 1s concentrated on fairly small unroll factors.
These pruning strategies are used in our current implementation, and at least for the programs in
this studv, are quite effective at making the search practical.

Further pruning is possible by making the additional observation that for each unrolled loop
[, the amount of reuse of an arrav reference with reuse carried by [ increases with the unroll fac-
tor X, Therefore reuse, like the register requirement calculation, 1s a monotonic, non-decreasing
function of the unroll factor for each loop, given that the unroll factor of all other loops 1s fixed.
Thus, within each dimension, holding all other unroll factors constant, binary search can be used
rather than searching all points. We can also increase unroll factors by amounts corresponding to
the superword size without much loss of precision, rather than considering each possible unroll fac-
tor, since the register requirements increase stepwise as a function of superword size. Additional
pruning techniques that take into account the hardware’s capability to take advantage of the results
of aptimization have been used in prior work [ 19, 24 7.
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Our implementation navigates the search space from mnermost loop to outermost loop. Tor the
applicable loops in the nest, varving the unroll factor of one loop while keeping the unroll factors of
all other loops fixed. Within a dimension of the search space, the lowest number of memory accesses
will be derived at the largest unroll factor that meets the register constraint. However, lower unroll
lactors may also have the same estimate of memory accesses (because reuse s monotonically non-
decreasing), so we identifv the lowest unroll factor with the equivalent estimate of memory accesses.
Then, the implementation considers the next applicable outer loop and the applicable inner loops
nested inside it. and in a particular dimension, each time it reaches the largest unroll factor that
meets the register constraint, 1t compares the estimated number of memory accesses to the lowest
gstimate so far to determine if a better solution has been found. The final result of the algorithm is
the unroll factors corresponding to the best solution.

As a subtle pomt, when unroll-and-jam 15 applied from outermost to mnermost loop, unrolling
the mner loop does not affect data access patterns or reuse distance. For this reason. inner loop
unrolling is not performed n earlier work [19]. In our context, however, because of the relationship
between superword-level parallelism and superword replacement, mner loop unrolling exposes op-
portunities for superword loads and stores and thus can impact the analvsis of register requirements.
Mevertheless, when reuse is exploited across iterations of the mnermost loop bodv as described in
Section 4.2, 1t is not necessary to unroll the mnermost loop bevond the superword size to achieve
the goal o considering register requirements in conjunction with superword-level parallelism. Note,
however, that smaller unroll factors for the mnermost loop may be selected, if an unroll-and-jam of
an outer loop carries more parallelism and reuse.

Although this search should theoretically find the optimal solution, according to our optimiza-
tion criteria. in fact the solution is not guaranteed to result i the fewest number of memory accesses,
for a number of reasons. First, in a few cases as noted, the register requirement analysis defined in
the previous section must conservatively approximate. Second, it is difficult to estimate the register
requirements used to hold temporaries, so we conservatively approximate this as well. Third, there is
a tradeoft between using extra registers to hold values across iterations, as discussed in Section 4.2,
versus using them to actually exploit reuse within the transformed innermost loop body. In fact. in
ceneral the algorithm does not take into consideration the amount of reuse resulting from perform-
ing superword replacement on specific references: replacing some references has more impact on
decreasing memory accesses than others.

This section and the previous one have described how the compiler analvzes the code to identify
reuse, register requirements and the unroll factors leading towards the lowest number of memory
accesses, In the next section, we describe how these analyses are used mn transforming the code to

achieve the desired result.

6. Code Generation

[n the previous section., we showed how consideration of superwords instead of scalar variables
creatly increases the complexity of determining the number of registers and memory accesses asso-
clated with exploiting reuse under different unroll amounts. In this section, we further discuss the
mereased complexity of code generation when performing superword replacement instead of scalar
replacement. The chiel source of code generation complexity is the need for superword ohjects to
be properly aliened, as in the following examples.
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When performing memory operations, the architecture may actuallv require that an access be
aligned at superword boundaries. For example. the AltiVec ignores the last four bits of an address
when performing a superword load or store. In such an architecture, when an access is not aligned
at a superword boundary, the compiler or programmer must read/write two adjacent superwords. A
series of additional instructions packs the two superwords for reads or unpacks a superword into its
corresponding two superwords Tor writes. Even on architectures that support memaory accesses not
aligned at superword boundaries, such as Intel’s SSE, there is a performance penalty on unaligned
accesses because the hardware must perform this realignment.

To perform an arithmetic or logical operation on two superword registers, the fields of the two
operands must also be aligned. For example, to add the third and fourth fields of one superword
register to the first and second fields of another, one of the registers must be shifted by two fields.

Consider also the following example:

for i = 1, n
c[i] = a[2i] + bI[i]

The access to a has a stride of 2, while the access to b has a unit stride. Thus, the compiler or
programumer must first pack the even elements of 2 into a superword register before adding them to
the elements of b. A third example occurs when exploiting partial reuse of a superword where data
in a register must be aligned to accommaodate the next operation.

In the SLP compiler, the default solution to alignment involves packing data through memory.
The SLP compiler allocates superword varables by declaring them using a special vector tvpe
designation, which is terpreted by the backend compiler to align the beginning of the variable to a
superword boundary in memory. The start of each dimension of an array of such ohjects should also
be aligned, by padding if necessary. Under these assumptions, the SLP compiler can detect when
operations are unaligned. Unaligned data 1s packed into an alhigned superword in memory before
being loaded into a superword register, and is unpacked before storing back to memory.*

In summary, alignment is a key consideration in code generation. and the overhead of perform-
ing alignment operations can be quite high. Further, alignment operations mav require a number
of additional superword registers, and in some cases, may result in additional accesses to memory
not accounted for by the model in the previous section. In this section, we show how to achieve the
number of registers derived by our model through a set of code transformations, presented in the
order in which thev are performed by our compiler. In addition to superword replacement, described
in Section 6.2, we also describe how index set splitting 15 used to align accesses to the beginning of
an iteration in Section 6. 1. and how our compiler eliminates additional memory accesses resulting
from packing through memory for alignment in Section 6.3. We tllustrate how these transformations
collaborate with each other by wav of an example in Figure 5, which is a simplified FIR filter.

6.1 Index Set Splitting

A simple way to reduce the need for alignment operations, when applicable, is to perform index
set splitting on loops.  For example, in Figure 5(b), the initial access to cut [1] refers to the

4. For architectures that support copying between scalar and superword register files, such as Intel’s SSE and DIVA,

this packing ean be performed more efficiently through register copies.
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1y forii= 1:1 < 64; 1+4) 1y for(i=1:1< 41 1++ )

2) out[1] = 0.0 2 out[1] = 0.0;

3 3) }

4 For (1= 25611 < 3205 14++) 4 for(i=41 < 64 1++)]

51 for i) =0;] < 256; 1++) 51 outi] = 0.,

Gl out[1F256] = cut[1-256] + infi-] * coel]]; 6
Ty for(i=256: 1< 320; i++)

(a) Original 2l for i [_];_i < 256; it :H - |

9 out[1- 256] = outf1 - 256] +mf1- 1] * coel)]:
10y }
Iy}

ib) After index set splitting

1y forii=1:1<4; 1+

2 out[1] = 0.0;

K) I

41 for{i=41 < 641 +=4)]

5] out[1 + 0] = 0.0;

G) out[1 + 1] = 0.0

7 out[1 + 2] = 0.0;

2] out1 + 3] = 0.0;

a9

10y forii= 256; 1< 320;1+=58}

L1} for () = 07 < 256 ) += B}

12} out[1+0-256] = out[i + 0-256] +1nfi +0- )+ 03] * coe[) +0]:
13} out[1+0-256] = out[1 + 0-256] + 1 +0-i]+ 11] * coe[) +1]:
14} :

15} out[1+ 7 -256] =out[i + 7 - 256] +inf1 + T -]+ 7] * coe[) + 7]t
16} b

17}

ic) After unroll-and-jam

Figure 5: Code Generation Example

second field of a superword, assuming cut [0] is aligned at a superword boundarv.  Through
index set splitting, the portion of the loop from line 4-6 will always perform aligned accesses. This
transformation is alwayvs safe, and 1s profitable whenever it increases the number of aligned memaory
ACCesses.

We assume index set splitting 1s performed prior to the SLP compiler. The loop 1s transformed so
that accesses corresponding to a particular reference in the main loop body are aligned to superword
boundaries. I there are multiple references and different choices for index set splitting are needed
to align specific references, we select a representative reference that, if aligned through index set
splitting, will also maximize alignment for other references. The reference selected must have unit
stride within the innermost loop.

Let @ be the loop index variable for the innermost loop, and b and b are the lower and upper
bounds for ¢, To derive the loop bounds for the copies of the innermost loop resulting from index
set splitting, we begin with the starting address, addr, of the reference when ¢ — b, where addr
hase + offset. Here, base refers to the beginning of the lowest dimension of the selected array, and
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1) flatl

2y fla2
3y flatd
4y flatd

6)  #F(Hoat #)&vec? + 1)
Ty Hifoat #)d&vec2 + 2)
81 #H(foat #F)&vec? + 3)

9 weed

% Hoat *)&vecl +3);
#{Hoat *)&vec] +0);
% Hoat *)&vec] +
= Aoat *)&vec |
51 #(float #1&vec? +0)

1z

+2);
flatl;
fat2;
flat3:
flatd:

vecadd(vec3, vec2);

107 vec_st{vecd, 1 # 4+ 0, (Hloat *)&out[-63]):

1) wecs
127 flats
13) flate

141 #={(float *)&vecs + 0)
150 #{(Hoat *1&veci + 1)

+2);

flats;
flat6;

(d) After SLP compilation

I
2)
3)
4)
5]
G)
T
&)
I.:l]
10}
12}
I}
13}

e
[y
e
Lh

termpl
termp2
temp3
temp4
viecl
viee?
vzl
viee?
vecd
termp |
templ
vecs

verd

vecddin # 4, (float # )&out[-63]):
% Hoat *)&vech
% Hoat *)&vecT +2);

fatl = *({float *)&wvecd + 3);

Aat2 = #{{float *)&wvecl + 0);
fat3 = *({float *)&wvecl + 1);
Aatd = #({float *)&wvecl + 2);

#( float *)&vec? + 0) = flatl;

#({ float *)&vec? + 1) = flat2;
#( float *)&vec? + 2) = flatd;
#({ float *)&vec? + 3) = flaid;

vecaadd{vecd, vec2);
(i float *)&wvect + 20;

veed
fats

flatt = *((loat *)&wvecT + 2);
#{ float *)&vect +0) = flats;
#(float *)&vect + 1) = flats;

(e) After superword replacement

replicate{ vecO, 3
replicate( vec 1, 0);

replicate{vec 1, 1k

replicate(vec 1, 2);

shiftzand_load(templ, templ, 4):
shiftiandload(vec2, temp2, 4);
shift_and_loadivec?2, temp3, 4):

shiftiandload(vec2, tempd, 4);

vecaddivec3, vecl):

replicate( veet, 2):

replicate( veeT, 2):

shiftizand_load(templ, templ, 4):
shift_and_loadivecs, temp2, 12):

i) After packing in registers

: Code Generation Example(Continued)

offset is the offset within that dimension. {Recall that the beginning of each dimension is aligned at

superword boundaries. )

The lower bound (spfif) of the mam loop body 1s computed by the following equation.

a7 Wit

b
b+ sws — (affset mod sws )

T offset mod sws =0
i offset mod sws & 0

[T 10 is constant, split can be computed at compile time. Otherwise, 1t is computed at run time. In

the example in Figure 5

. offset for out [1] 18 1, so 1l sws
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6.2 Superword Replacement

superword replacement removes redundant loads and stores of superword variables, using super-
word temporaries instead. 'We assume that this code transtormation will be followed by register
allocation that places these variables in registers. For example, in Figure 5(d) and (e), the store
and load at statements 10 and 11 can both be eliminated, and vec4 can be used in place of vecs
in subsequent statements. Superword replacement is also affected by alignment, in that we detect
redundant loads and stores by identifving distinct memory operations that refer to the same aligned
superword, even if the addresses are not identical.

The compiler recognizes opportunities for superword replacement by determining that addresses
and offsets for different memory accesses [it within the same superword, and verifies that there are
no intervening kills to the memory locations. The current implementation uses value numbering [25]
to detect such opportunities. Value numbering i1s a well-known compiler technique for detecting
redundant computation, but it 1s sensitive to operand and operator ordering. To increase the success
of value numbering, we first preprocess the code so that memaory access operations are rewritten into
a canonical form, constant folding has been applied to simplify addresses, and alignment is taken
into account. As earlier stated, all memory accesses are aligned at superword boundaries, so if an
unaligned address appears in a memory access, the resulting access will be aligned to the preceding
superword boundary. The preprocessing performs this alignment in software so that redundant
accesses will be identified by value numbering.

The current implementation of superword replacement 1s more restrictive than what was pre-
sented in Section 3. Value numbering operates on a basic block at a time so we cannot exploit reuse
across iterations of the unrolled loop bodyv. This is because we are performing this transformation
after the SLP compiler has flattened the loop structure to gotos and labels. The dependence infor-
mation used to perform the register requirement analysis cannot easily be reconstructed from such
low-level code. In an implementation where SLP and SLL are more tightly integrated. it should he
possible to perform superword replacement as a byproduct of the analvsis m Section 3.

6.3 Packing in Superword Registers

As previously described. packing in memory is performed to align superword objects. Memory
packing moves data elements from a set of locations in memory (sources) to a superword location
(destination) so that the destination superword contains contiguous data, aligned to a superword
boundary or to another operand. For example, in Figure 5(e). superword variables vec0 and vecl
are the sources and superword variable wec2 is the destination for memory packing in lines 1-8,
Our implementation performs a transformation we call register packing (o optimize memory
packing operations. A series of memaory loads and stores for scalar variables are replaced by su-
perword operations on registers, as shown in Figure 5 (). We identify a destination as a superword
data tvpe that 1s the target of a series of scalar store instructions into its fields, such as vec2 in
the example. The corresponding sources are identified by Anding preceding loads of these scalar
variables. If the inputs to these loads are fields of superword data tvpes, then these superwords are
the sources. In the example, £1atl is stored into a field of vec2, and there is a preceding load
of £1atl that copies a field of source vec0. Once we find such a pattern. we verify the safety of
this tranformation by guaranteeing that there are no mtervening modifications or uses of either the
scalar variables or destination superwords between loading the scalar variables and completion of
storing into the destination. We also verify that the destination statements ultimately produce con-
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a P templ

alallalil]alz]l]alz] af[dljalollalalfalol]
alalflalollalolfalol alal
templ P

(a) templ = rEplicatEEa, o) (b} P = shift_and_load':];-, templ, 4]

Figure 6: Operations used for packing in registers

tiguous data in the superword. We define sowrce and destination indices as the fields in the source
and destination superword variables, respectivelv. For example, the source index of vec01s 3 in
line | of the example.

Once the compiler identifies sources and destinations, it transforms the code to replace memory
accesses with operations on superword registers. The register packing transformation takes advan-
tage of two instructions that are common in multimedia extension architectures. Replicate replicates
one element of a source register to all elements of a temporary output register (Figure 6ia)). Shift-
and-load takes two input registers. The first input register i1s a temporary, and is shifted lefi by
the number of bytes specified by the third argument. The same number of fields is taken from the
second input register, which is a temporary derived from a source superword, to fill the output tem-
porary register (Figure (b)), Simply stated, we are shifting each source element into the destination
superword, in order, so that the final result is a destination superword that corresponds to contiguous
aligned data.

The steps of the register packing transformation are as follows.

[. We sort the destination statements in increasing order of their destination indices. We then
sort the source statements to correspond to the ordering of the destination statements, so that,
for example, the scalar variable associated with the first source statement is the same as the
scalar variable associated with the first destination statement.

2. For each source statement. in sorted order, we generate a replicate statement whose two n-
puts are the source superword and the source index, and the output is a superword tempo-
rary. For example, as in Figure 5(f)., we have replaced line 1 of Figure 5(e) with termpl

_r'rj.'J.".n;.".'J."r [ reeld, 1|

Laa

We replace each destination statement, in sorted order, with a shift_and_load operation.
The first mput is the destination superword. The second nput is the temporary generated
by the replicate of the corresponding source statement. The third argument, the shift
amount, usually involves shifting by a single superword field. For the last destination field,
the shift amount is the difference, in bytes, between the sws and the last destination field. For
completely filled destination superwords, it will also be just a single field. For example, in
lines 1-8& of Figure 5(e). the destination superword is completely filled, so the shift amount 1s
always a single 4-byte field. In lines 10-13, however, only the first two fields are filled, so the
shift amount of the last destination statement is a total of 12 bytes
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4. Source statements are deleted if the scalar variables are not live bevond the corresponding

destination statements.

6.4 An Example: Shifting for Partial Reuse

Spatial reuse within a superword happens when distinet loop iterations access different data in the
same superword. Partial spatial reuse of superwords occurs when distinet loop iterations access
data in consecutive superwords in memory, partially reusing the data in one or both superwords,
as shown by the example in Figure 5 (a), and illustrated graphically in Figure 7. In this example,
as before assuming that sws L, array reference ira[¢ — 7| has partial spatial reuse in loop 7. For
a fixed value of ¢+ and j, the data accessed n iteration (2, y) consists of the last three words of the
superword accessed in iteration (i — 1, 7, plus the first word of the next superword in memaory. This
tvpe of reuse can be exploited by shifting the first word out of the superword, and shifting in the
next word, as in Figure 7. As partiallv shown in Figure 5(c) and (), only four superwords need to be
loaded for the data accessed in the 64 copies of ¢n [t — 7| in the loop body, after shifting 1s applied.

Before shifting, ¢n [t — j| had to be loaded from memory (and possibly aligned) for each of the four
copies of in[t — j] in the loop body.

This shifting opportunity arises frequently in both signal and image processing applications,
where one object 15 compared o a subcomponent of another object, such as the example in Fig-
ure 5(a). We detect these opportunities through the analvsis described in Section 3. The optimization
shown i Figure 7 falls out from the combination of unroll-and-jam, alignment operations generated
by the SLP compiler, superword replacement and register packing.

7. Experimental Results

This section presents an experiment that demonstrates the dramatic performance improvements that
can be derived from compiler-controlled caching in superword registers. We describe an implemen-
tation that incorporates superword register locality optimizations into an existing compiler exploit-
ing superword-level parallelism [1]. We present a set of results on four multimedia kernels and two
scientific applications, derived automatically from our implementation.
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7.1 Implementation and Methodology

Figure & illustrates the svstem we have developed for this experiment. which uses the Stanford
SUIF compiler as its underlving infrastructure [26]. The mput to the svstem is a C program.
which is then optimized by passes in SUIF, including our Superword Locality analvsis described
in Section 3, followed by the Superword-Level Parallelism (SLP) optimization passes by Larsen
and Amarasinghe[ 1], and finally, an optimization pass that performs superword replacement as de-
scribed n Section 6.2 to steer the compiler to obtain the reuse in superword registers that the SLL
algorithm determined was possible.

This ordering of passes was selected primarily for implementation convenience, since we were
building on the existing SLP compiler implementation. The SLP passes operate on the code at a

low level, where it 1s difficult to reconstruct the loop structure and array access expressions. Thus,
register requirement analvsis and unroll-and-jam were applied prior to SLP, rather than afterward.,
as was suggested by the examples in Section 2. Superword replacement must follow SLP, which is
the reason the components of our algorithm are performed on either side of SLP. Note that both the
SLP passes and SLL employ loop unrolling, but for different reasons. The SLP compiler operates
on basic blocks and unrolls the innermost loop of a loop nest to convert loop-level parallelism mto
hasic-block parallelism. The SLL algorithm performs unroll-and-jam to expose locality in basic
blocks. However, the loop that carries the most spatial locality at the superword level 1s ofien the
loop that carries the most superword-level parallelism. Therefore, it 1s a reasonable choice to use
the SLL algorithm to expose both parallelism and locality i the loop body while suppressing the
unrelling orgimally performed by the SLP compiler.

o
1

SUIF extended with M 21tiVec Extended GCC
- SLL "vector"
- SLF C program FPowerPC G4
- Superword executable
replacemsnt
T FowerPC G4

C program

Figure & Implementation.

The output from the SUIF portion of the system is an optimized C program, augmented with spe-
cial superwaord data tvpes and operations. Currently, the resulting code is passed to a Gnu C backend.
modified to support superword data types and operations for the PowerPC AltiVec instruction-set
architecture extensions. Each superword operation corresponds, in most cases, to a single instruc-
tion in the AltiVee ISA. The role of the GCC backend mcludes replacing the vector operations with
the corresponding AltiVec superword instruction, and allocating the vector data tvpes to the super-
word registers. The resulting code 1s executed on a 523 MHz Macintosh PowerPC G4, which has a

superword register file consisting of 32 128-hit registers.

7.2 Performance Measurements

We have applied the previouslyv-described implementation to four of the five multimedia kernels and
the two scientific programs from the Specfp95 benchmark suite for which execution time speedups
were reported in Larsen and Amarasinghe, summarized in Table 2 [1]. As a first step, we verified
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Name Description Data Width [nput Size
WIVIM WVector-matrix multiply 32-bit float 512 elements
FIR Finite impulse response filter | 32-bit float 256 filter, 1M signal
YUV RGB to YUV conversion | o-bit integer 32K elements
MMM Matrix-matrix multiply 32-bit float 512 elements
SWIIm Shallow water model 32-bit float | Spectp95 reference input
tomeaty Mesh generation 32-bit float | Spectp93 reference input

Table 2: Benchmark programs.

that we could reproduce their previously reported results. For purposes of comparison, we mnitially
followed the same methodology established in Larsen and Amarasinghe [1]: (1) we used the same
programs; (2} all versions of the code were compiled on the Altivee without optimization; and, (3)

haseline measurements were derived by compiling the unparallelized code for the PowerPC G4, We
are using an updated implementation of SLP from what was published. as well as a faster target
machine and new releases of GCC and the Linux operating svstem, so there are some differences in
results, but they are very minor.

Larsen and Amarasinghe were unable to use optimization on the AlnVec-extended GCC back-
end at the time of their study, but in the intervening time, this Motoralasupplied backend has be-
come more robust. For the results presented in this section, we modify the methodology to perform
037 optimizations. To understand the overall benefits of exploiting compiler-controlled caching
in superword registers, we have compared the results of the full system with those obtained when
SLP is used alone. For this reason, we report results where SLP is applied to the original codes and
compare these results to the full svstem.

We show three sets of results. First, mn Table 3, we show the number of vector, scalar and total
memaory accesses For the baseline and the full system. Our approach eliminates from 38% to 69%
of the vector loads and stores in the four kernels, and over 85% in SWIM and TOMCATV. We also
eliminate over 90% of the scalar loads and stores in the four kernels, and over 35% in SWIM and
TOMCATV using register packing, as described m Section 6.3, When combined, more than 50%
of memory accesses are eliminated.

Figure @ shows how these reductions in instructions translates into speedups over SLP. To isolate
the benefits of individual components of our svstem, we measure the performance of the code at
several stages of the optimization process. The first bar. normalized to 1, shows the results of
SLP alone. The second bar, called Unrolled+SLE, shows the results of running the first portion
of the SLL algorithm, described in Section 3, which performs unroll-and-jam on the loop nest to
expose opportunities for superword reuse, and following up with SLP. This bar isolates the impact
of unrolling, since it is not until after SLP that this reuse is actually exploited. Also, because it is
reordering the tteration space to bring reuse closer together, this version will also obtain locality
henelits in the data cache. Thus, this bar provides the cache locality benefits of unroll-and-jam,
which can be compared against the additional improvements from superword register locality. The
third bar, Superword Replacement, provides speedup using superword replacement. as described in
Section 6.2. The final bar, entitled Register Packing, shows the additional improvement due to this
technique, described i Section 6.3,
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Name [ Mem. Acc | SLP only{baseline) | SLP+SLL+RegPack | Removed(%i)
Scalar 301989 588 0 | 00,00

VMM Vector | 00,663,297 50462723 4987
Total 402,653,185 50462723 747

Scalar L113.940.672 52,031,104 9264

FIR Vector | 96,558,849 120,631,297 AB.63
Total 1310499521 202,662,401 84.54

Scalar 9,400 0 10000

YUV Vector 52,428,801 23,756,801 54.69
Total 52,438,201 23,756,801 54.70

Scalar 135,267,328 525312 99.61

MMM Vector 167,772,161 50.397,187 G996
Total 303,039 489 50,922,499 H3.20

Scalar 17.150,342.657 8.920.336,007 47.99

SWim Vector 8.495723,139 [,200,754,698 85.87
Total 25.646,065,796 10,121,090,705 60,54

Scalar 509 038,032 384,070,586 35.89

tomeaty Vector 284.631.621 9915592 96,51
Total BRI 6OY.653 393,986,178 5541

Table 3: The number of dvnamic memory accesses.

Owverall, we see that in combination, applications achieve speedups between 1.3 and 3.1 over
SLP alone, with an average of 2.2X. Consideration of TOMCATY and SWIM shows that both pro-
crams have little temporal reuse, although there 1s a small amount of spatial reuse that is exploited
with our approach. particularly in TOMCATY. We are oblaining a locality benefit due to unroll-and-
Jam. We also observe additional SLP due to index set sphitting. motivated by the need to create a
steady-state loop where the data 1s aligned to a superword boundary. The four other programs show
a significant improvement from superword replacement. For VMM, MMM and FIR, there are also
huge gains due to register packing.

In Figure 10, we further explore the relationship between superword replacement and register
packing. The first bar, which is normalized to 1, shows the Unrolled+SLP version (the second bhar
in the previous figure). The second bar 1s the Unrolled +SLP+SWR result from the previous figure,
but this time it is normalized to Unrolled+SLP. To show the isolated benefit of register packing
without superword replacement, we applied register packing to the Unroll+SLP version, obtaining
the results shown in the third bar (Unroll+SLP+RP) of Figure 10. The final bar is the result of
applving all of the optimizations. As might be expected from the previous figure, register packing,
either i isolation or in conjunction with superword replacement, does not impact the results for
YUV, swim or tomcatv., We see that for VMM and MMM, register packing vields about the same
improvement when applied prior to superword replacement than afterward. Especially interesting
are the results for FIR, because the speedup is much larger when superword replacement and register
packing are applied together than when they are applied separately. On further mnvestigation, we
found that the UnrolH-SLP+RP version suffered from register spilling.  Superword replacement
removes the majority of the superword variables used in the Unroll+SLP+RP version, which in turn
reduces register pressure. This result 1s consistent with the goal of the algorithm in Section 3. We
selected unroll factors based on the assumption that superword replacement would be performed.
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Figure 9 Speedups over SLP alone. Figure 10: Impact of register packing.

Without superword replacement, there is register pressure after unrolling, and this 1s magnified by
register packing because it introduces additional superword variables.

In summary, the SLL techniques presented in this paper dramaticallv reduce the number of
memory accesses and vield significant performance improvements across these 6 programs. Thus,
this paper has demonstrated the value of exploiting locality in superword registers in architectures
that support superword-level parallelism such as the Altivee.

8. Related Research

For well over a decade, a significant body of research has been devoted to code transformations
to improve cache locality, most of 1t targeting loop nests with regular data access patterns [27, 28,
29, 30]. Loop optimizations for improving data locality, such as tiling, interchanging and skewing,
focus on reducing cache capacity misses. OF particular relevance to this paper are approaches to
tiling for cache to exploit temporal and spatial reuse; the bulk of this work examines how to select
tile sizes that eliminate both capacity misses and conflict misses, tuned to the problem and cache
sizes (31, 11, 12, 13, 14,15, 16, 17, 18, 32]. The key difference between our work and that of tiling
for caches 1s that interference 1s not an 1ssue n registers. Therefore, models that consider conflict
misses are not appropriate. Further, our code generation strategy must explicitly manage reuse in
registers.

There has been much less attention paid to tiling and other code transformations to exploit reuse
in registers, where conflict misses do not occur, but registers must be explicitly named and managed.
A few approaches examine mapping array variables to scalar registers [18, 33, 20]. Most closely
related to ours is the work bv Carr and Kennedv, which uses scalar replacement and unroll-and-
Jam to exploit scalar register reuse [19]. Like our approach. i deriving the unroll factors, they
use a model to count the number of registers required for a potential unrolling to avoid register

pressure, and they replace array accesses, which would result in memory accesses, with accesses to

temporaries that will be put in registers by the backend compiler. Their search for an unroll factor
is constrained by register pressure and another metric called balance that matches memory access
time to fAoating point computation time. Our approach is distinguished from all these others in that
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the model forregister requirements must take spatial locality into account, we replace array accesses
with superwords rather than scalars, and we also consider the optimizations in light of superword
parallelism.

There are several recent compilation svstems developed for superword-level parallelism [1. 7,
5,9, 10]. Most, including also commercial compilers [34, 351, are based on vectorization technol-
oev [7. 9], In contrast, Larsen and Amarasinghe devised a superword-level parallelization system
for multimedia extensions [1]. They point out that there are many differences between the multi-
media extension architectures and vector architectures, such as short vectors, ease of mixing with
scalar instructions, and need for alignment of memory accesses [36]. They argue that their algo-
rithm for finding superword-level parallelism from a basic block nstead of a loop nest 1s much more
effective than using vectorization-based techniques. None of the above approaches exploil reuse in
the superword register file.

9, Conclusion

This paper presents an algorithm for compiler-controlled caching in superword register files. The
algorithm 1s applicable to multimedia extensions such as Intel’s SSE. PowerPC's Altivee, and also
to Processor-in-memory (PIM ) architectures with support for superword operations.

We implemented our approach in an existing compiler targeting superword-level parallelism.
We presented experimental results, derved automaticallv, comparing the performance of six bench-
marks/multimedia kernels optimized for parallelism onlv, using SLP, and optimized for both paral-
lelism and locality. Our results show speedups ranging from 1.3 to 31X, and an average of 2.2X,
on the & programs as compared to using SLP alone, and most memory accesses are removed.

The approach taken here that separates optimizations for SLL and SLP is convenient for imple-
mentation purposes, since we are building upon the work of others. Further, as there are now a few
other compilers that exploit superword-level parallelism [ 7, 8. 9, 10], the same can be used to extend
these existing svstems to incorporate compiler-controlled caching in superword registers. Ideally,
however, an optimizer that mtegrates the superword parallelism and locality technigues could be
even more effective. For example. in a combined algorithm, selection of which loops to parallelize
could also take superword-level locality into account. A combined algorithm is the subject of future
work.
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